
 
12.520 Lecture Notes 27 

 
 
Flow in Porous Media 
 

Problem of great economic importance (also scientific) 

• hydrology (ground water migration, toxic waste) 

• oil migration 

 • soil stability, fault mechanics (pore pressure) 

 • melt migration in mantle 

 • geysers and hot springs 

 

Porous medium  voids  porosity φ ⇒ ⇒

φ≡ volume fraction of voids      

For example,  

 Sand: φ ∼40% 

 Pumice: φ ∼70% 

 Oil shales: φ ∼10−20% 

If pore connected ⇒  permeable 

Pressure gradient ⇒  flow 

Darcy’s law kv p
η

⇒ = − ∇  

v≡ volumetric flow rate      k ≡ permeability 

 

We can use Poiseuille flow for simple geometries. For example, cubical matrix, circular 

tubes or pipes. 
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Figure 27.1. An idealized model of a porous medium. 
Circular tubes of diameter δ form a cubical matrix with 
dimensions b.

 

Figure 27.1 
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Figure by MIT OCW.



Large b ⇒  large v?     
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Large φ ⇒  large v?     
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Compare to cubes separated along faces (channel flow) 

 

 

 

                                      
Figure 27.2 
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Again, 
 
dp
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directed along one edge 
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Darcy velocity: 
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k is different depending onφ . 
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Clearly, porosity distribution is important. 
 
 
 

                                           

 
Figure 27.3 

 

Also -- more easily measured than figured out theoretically – more complicated 
geometries  numerical simulation. →
 
Consider “Lawn Sprinkler” example – flow in unconfined aquifer. 
 

 
 
 
 

Figure by MIT OCW.
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Figure 27.4 

 
 

 
 h ≡ “hydraulic head” 
 
 u →  Darcy velocity 
 
 

Dupuit approximation: 
 
dp
dx

= ρg ∂h
∂x

 

 

For 
   
∂h
∂x

= 1  flow is one-dimensional. 

Darcy’s law:  
 
u = −

kρg
η

∂h
∂x

 

 

Conservation of mass: Assume no input 

 

Flux   
  
Q = u(x)h(x) = −

kρg
η

h dh
dx

= const. 

⇒  phreatic surface is a parabola 

 

For    at x = 0 h = h0
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Figure by MIT OCW.



Suppose we have a porous dam of width w. The relation between Q, and   is: h0 h1

  
Q =

kρg
2ηw

h0
2 − h1

2( ) 

or 
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Impermeable Layer

Figure 27.5. Unconfined flow through a porous dam. The Dupuit parabola AC is the solution
if (h0-h1)/h0<<1. The actual phreatic surface AB lies above the Dupuit parabola resulting in a 
seepage face BC.
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 Figure 27.5 
Figure by MIT OCW.
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