12.742 - Marine Chemistry

Lecture 5 - Marine Chemistry

Prof. Scott Doney

• Overview

- Finish atmosphere (circulation, net fresh water)
- Ocean equation of state
- $-T, S, \text{ or } \rho \text{ distributions}$
- Wind-driven circulation
- Deep-water thermocline
- Atmosphere
 - Circulation on a rotating planet Northern Hemisphere
 - Rotation turns flow in the Northern hemisphere to the right (Coriolis force); rotation turns flow in the southern hemisphere to the left.
 - $\cdot\,$ Rotation effects are strongest at the poles and diminish towards the equator.

Figure 1.

Figure 2.

- Large imbalances in net heating/cooling drive

Figure 3.

flow

In atmosphere, convention is to report direction as where the fluid is coming from (e.g. "north wind"); in ocean convention is to report direction as where the fluid is moving (e.g. "eastward current")

Figure 4.

- Ocean density equation of state
 - Ocean physics driven by wind stress, buoyancy (density) fluxes, rotation
 - $-\rho(T, S, P)$ empirically based
 - Freshwater $\sim 1000~{\rm kg/m^3}$
 - Seawater roughly $1022 1028 \text{ kg/m}^3$ at surface
 - Density anomaly:

$$\sigma(T, S, P) = \rho(T, S, P) - 1000$$

- Potential temperature (θ)

 $\theta(T, S, P) \Rightarrow \theta(T, S, 0)$ for adiabatic path

- Compressibility

- Temperature and Salinity distributions
- SST map upwelling regions
- Temperature with depth
 - $\cdot\,$ Main thermocline, seasonal thermocline, gyres, low versus high latitude

Figure 7.

 $\cdot\,$ T - S diagrams

 \cdot 2 and 3 end-member mixing

Figure 8.

Ocean well stratified.

Weak diapycnal diffusion in ocean interior (away from surface and bottom boundary layers).

Diffusivity order 10^{-5} m²/s.

Some intensification over rough topography due to tidal generated internal waves. • Wind-driven circulation

Most ocean currents are geostrophic where pressure balances the Coriolis force and the flow is perpendicular to the pressure gradient (along constant pressure lines)

– Ekman spiral

Figure 9.

– Ekman pumping

- Subtropical and subpolar gyres

– ACC - circumpolar

Much of ocean circulation is dominated by mesoscale eddies $10-200~{\rm km}$ - Don't believe simple "cartoons" of circulation

Schmitz diagram
Upwelling/downwelling combination of wind stress and rotation

- $\cdot\,$ Divergence of flow
- \cdot Cool equatorial waters

Figure 12.

Figure 13.

- Deep water formation
 - Occurs in North Atlantic and Southern Ocean but not North Pacific (because of low surface salinities) (Surface salinity map)

North Atlantic Salinity/Temperature map
Size of water transportsMesoscale eddiesSv is a Sverdrup, a unit of volume transportMesoscale eddies $1 \text{ Sv} = 1 \times 10^6 \text{ m}^3/\text{s}$ 50 - 100 km's geostrophic balanceAmazon ~ 0.2 SvSvGulf Stream ~ 100 SvIsopycnal mixing O(1000 m²/s)Acc ~ 120 - 140 Sv(but only if on scale bigger than mesoscale eddies)
Dyapycnal mixing O($10^{-5} - 10^{-4} \text{ m}^2/\text{s}$)

- Gyre circulation

 $\cdot\,$ Western intensification of flow; amplification of flow w/lots of recirculation

- Chemical measures of ocean ventilation rates
 - $\cdot\,$ Transient tracers
 - Natural radiocarbon ${}^{14}C$ decays with ~ 5000 year half-life. 1000 years is good for deep/bottom waters, which have ages of a few hundred to 1000 years; decay counting; accelerator mass spectrometry (AMS)
 - · CFCs chlorofluorocarbons (freons) can measure at very low levels CFC-12, CFC-11, CFC-112, CCl_4 using gas chromatography (for fluorinated compounds use electron capture detector)

Figure 16.

 $\cdot\,$ tritium - ^{3}He

Atmospheric weapons testing produced 3H - most injected in stratosphere use 3H as "dye-tracer" also $^3H-^3He$ age: $^3H\rightarrow^3He$ with ~ 12 year half-life For closed system -

$${}^{3}H = {}^{3}H(t_0)e^{-\lambda t}$$

excess ${}^{3}He = 0 + {}^{3}H(t_0)e^{-\lambda t}$

Figure 17.

 ${}^{3}He$ reset to solubility at surface by gas exchange

Sum of ${}^{3}H$ + excess ${}^{3}He$ is a constant equal to ${}^{3}H$ at time 0 (last exposure to atmosphere)

$$\frac{{}^{3}H}{{}^{3}H+{}^{3}He} = e^{-\lambda t}$$
$$\log\left(\frac{{}^{3}H}{{}^{3}H+{}^{3}He}\right) = -\lambda t$$
$$\Rightarrow \operatorname{age}\tau = -\frac{1}{\lambda}\log\left(\frac{{}^{3}H}{{}^{3}H+{}^{3}He}\right)$$

- Bomb-radiocarbon
 - $\cdot\,$ Also released during atmospheric weapons testing
 - \cdot Gas exchange of $^{14}CO_2 \rightarrow$ ocean through subsequent circulation into thermocline and deep waters
 - $\cdot\,$ Some biological redistribution via particles and remineralization

Figure 18.

- Trace release experiments
 - $\cdot~SF_6$ diapy canal diffusion experiments, eddy mixing and dispersion; gas exchange, deliberate injection of "dye" like traces