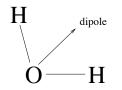

12.742 - Marine Chemistry

Fall 2004

Lecture 6 - Determinants of Seawater Composition


Prof. Scott Doney

- What is seawater?
 - Water
 - Dissolved inorganic salts (major ions)
 - Trace species, organics, colloids, particles, life, \ldots
- Water: H_2O
 - A very odd molecule

Sets up electric dipole because O is more electronegative and bond angle is asymmetric

Hydrogen bond - 4.5 kcal/mol, while covalent bond is ~ 100 kcal/mol.

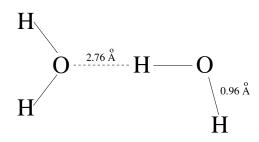
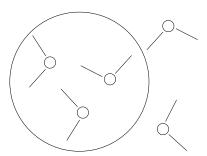



Figure 3.


Hydrogen bonding has a large impact on physical properties of water, ion-pairing solvent solubility; anomalous relative to similar H_2S , surface tension

- Flickering cluster model

Water does not like to be broken up (unless adding ionic species) This causes a high heat capacity, latent heat of evaporation, and latent heat of fusion

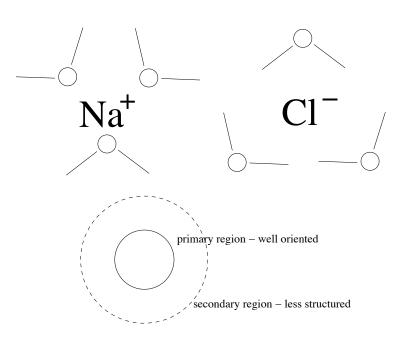

heat

Figure 5.

$$1.2 \frac{m}{y} \cdot 1025 \frac{kg}{m^3} \cdot 590 \frac{cal}{g} \cdot 4.184 \frac{J}{cal} \cdot 1000 \frac{g}{kg} \cdot \frac{1 \text{ yr}}{3.15 \cdot 10^7 \text{ s}} \sim 96 \frac{W}{m^2}$$

compared to solar heating of $\sim 170 \frac{W}{m^2}$

- Water as a solvent
 - Very good at dissolving ionic species and polar compounds

$$NaCl \rightleftharpoons Na^+ + Cl^-$$

Figure 6.

- Water more dense than ice
 - Profound impacts for climate, life, etc.
- Seawater versus freshwater
 - Comparison

increase with salinity	decrease with salinity
density	freezing point
electrical conductivity	temperature of maximum density
osmotic pressure	

- Salinity
 - · Total mass of salt in water $\sim 35 \frac{g}{kg}$, that is, 35 parts per thousand (ppt), and there is a relatively constant composition for major ions
- Methods of salinity measurement
 - · Simply drying and weighing (± 0.01 ppt)
 - \cdot Lose some species with heat (HCl)
 - \cdot Oxide formation
 - \cdot Reproducibility
 - $\cdot\,$ Tedious

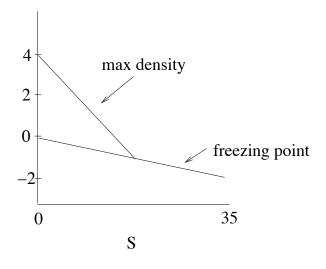


Figure 7.

· Titration of Cl^- (and Br^- ions with $AgNO_3$ (or electrochemical)

 $S = 1.806 \cdot Cl$ parts per thousand Chlorinity in $\frac{g}{kg}, \pm 0.002$

· Conductivity (± 0.001)

 \cdot Compare against KCl standard at fixed pressure, $15^{\circ}\mathrm{C}$

$$K_{15} = \frac{\text{sample}}{KCl \text{ solution}}$$
$$s = a_1 - a_2 K_{15}^{1/2} + a_3 K_{15} + a_4 K_{15}^{3/2} - a_5 K_{15}^2 + a_6 K_{15}^{5/2}$$

- \cdot in practice use "secondary standards" (Wormely water) Standard Sea Water UNESCO, 1978.
- Practical salinity scale (PSS)
- · isotopes empirically derived from lab work $(s = f(K_{15}), \rho, \text{ etc})$
- Major constituents in seawater, charge balance

$$\begin{array}{rrrr} Na^{+} & Cl^{-} \\ Mg^{2+} & SO_{4}^{2-} \\ Ca^{2+} & HCO_{3}^{-} \\ K^{+} & \text{others} \end{array}$$

- \cdot "law of constant proportions"
- Except for comments below, major ions act essentially conservatively in ocean change due to net E-P input

Ion	Residence time (in units of 10^6 y)
Na^+	70
Mg^{2+} Ca^{2+}	14
Ca^{2+}	0.7
Cl^-	100
SO_{4}^{2-}	10

input

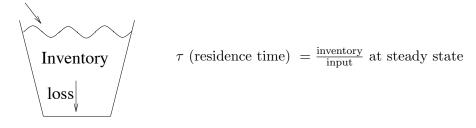


Figure 8.

Compare with mixing time of the ocean $\sim 10^3 {\rm \ years}$

- Where does this fall apart?
 - $\cdot\,$ Estuaries
 - · Average river composition differs
 - $\cdot\,$ Much lower inventories ~ 0.2 parts per thousand
 - · Increased ratios of Ca^{2+} , Mg^{2+} , K^+ , SO_4^{2-} , HCO_3^- to Cl^- , $s = f(K_{15})$ and ρ do not work as accurately

 \cdot Evaporative basins

- As salinity increases, start to deposit salts (Brine can also differ from seawater) $CaCO_3(Mg)$ $CaSO_4 \cdot 2H_2O$ (gypsum) NaCl halite $MgSO_4, KCl, NaBr, MgCl_2$ bitterns (K, Mg salts)
- $\cdot\,$ Internal biological cycling of $CaCO_3$

$$Ca^{2+} + CO_3^{2-} \leftrightarrows CaCO_3(s)$$

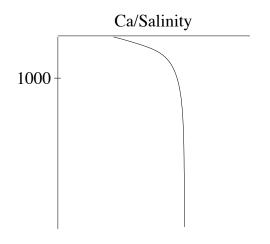
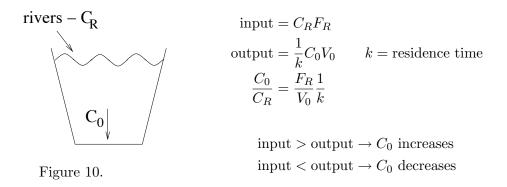



Figure 9.

Depletion of SO_4^{2-} in an oxic basins or sediments; microbes using SO_4^{2-} as an electron acceptor

- Geochemical cycles what controls the major ion composition ?
 - Two models "equilibrium" (Sillen), "kinetic"
 - Equilibrium model says that solution chemistry of seawater in thermodynamic equilibrium with atmosphere and minerals on ocean floor; has not held up well but deviations from thermodynamics equilibrium are quite interesting

Examine ratio of seawater concentration/river water concentration versus residence time.

- Major ion budgets
 - Rivers and terrestrial weathering are primary source for most major ions.
 - Loss mechanisms include:
 - Cl^-
 - · Cyclical salts salt spray transported to land; makes river Cl^- source look larger than what is really coming from weathering.
 - $\cdot\,$ Pore water trapping burial in interstitial waters

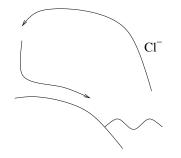


Figure 11.

- $\cdot\,$ Evaporite production
 - $\cdot\,$ Many of the land masses underlain by evaporite deposits
 - $\cdot\,$ Not occurring to great extent right now
 - $\cdot\,$ Lots of shallow seas episodic in geological history

Figure 12.

 $\cdot\,$ On long time-scale evaporite formation must balance sources

 $- Na^+$ - exchangeable cations on clays

$$B\text{-clay} + A^+ \leftrightarrows B^+ + A\text{-clay}$$
$$\frac{X_{\text{A-clay}}}{X_{\text{B-clay}}} = K_{AB} \frac{[A^+]}{[B^+]}$$

X: mole fraction at exchange site

Concentration of Na^+ to other cations is higher as one goes from fresh water to salty water

Figure 13.

$$2B\text{-clay} + C^{2+} \rightleftharpoons C\text{-clay} + 2B^{+}$$
$$\frac{X_{\text{C-clay}}}{X_{\text{B-clay}}} = K_{BC} \frac{[C^{2+}]}{[B^{+}]^{2}}$$

which shows how the charge balance for divalent ions and concentration affect the equilibrium: $10 \times \text{ concentration} \rightarrow \frac{1}{1} \rightarrow \frac{10}{100}$

As total value of $[B^+]$ increases, it forces more B onto clay and release more C into solution.

 Was once thought that clays were heavily altered in interstitial waters/sediments forming source/sinks for ions (reverse weathering).

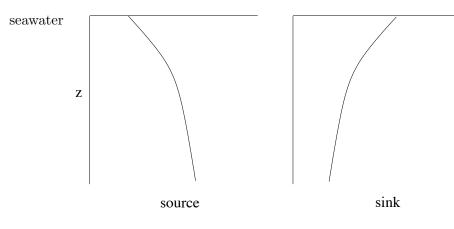


Figure 14.

Does not appear to be a major process for most elements

- Mid-ocean ridges
 - hot 300-350°C reactions of rock with seawater variability from vent to vent; some generalizations
 - sinks for $MgSO_4$ (though sulfate may have source from low temperature hydrothermal off the ridge axis)
 - Biogenic

 $Ca^{2+}, CaCO_3$ sediments

 $SO_4^{2-} \rightarrow H_2S$ some lost as elemental sulfur/pyrite DMS (?), cont. (?) margin sediments – Complications in closing ocean budgets for major ions

- · River concentrations reflect natural levels plus pollution and human perturbations.
- · Long term imbalance because of episodic evaporites.
- Ion-ion pairing or chemical speciation

$$CaCO_3(s) \rightleftharpoons Ca^{2+} + CO_3^{2-}$$
$$K_{\rm sp} = [Ca^{2+}][CO_3^{2-}]$$

· Conditional or apparent solubility product

 $\cdot\,$ Ionic strength; activities rather than concentrations

 $\cdot\,$ Affected by presence of other ions in seawater mix Similar equations

$$Mg^{2+} + SO_4^{2-} \leftrightarrow MgSO_4 \text{ (aq)}$$
$$\beta = \frac{[MgSO_4]}{[Mg^{2+}][SO_4^{2-}]}$$

Na^+, K^+, Cl^-	mostly/all in free ion form
Mg^{2+}, Ca^{2+}	90% free
SO_{4}^{2-}	$\sim 50\%$ free
CO_3^{2-}, Ca^{2+}	$\sim 10\%$ free