Early diagenesis in marine sediments

Why study this part of the ocean?

Why study this part of the ocean?

Particle flux to the sea floor

Why study this part of the ocean?

Marine Sediments

- 1) The flux of particles to the sea floor
- 2) Preservation rates of biogenic components of the flux
- 3) Consequences of early diagenesis
- 4) Specifics:
 For each of : Organic matter, CaCO₃, Biogenic SiO₂ :
 a) mechanism for decomposition / dissolution b) how do we know?

Preservation Rates of Biogenic Components: Generalizations

Organic Matter:

At depths > 1000m: Preservation Rates ~ always < 3%; range <1% to ~ 5%

Continental margins: more variable; sometimes (rarely) > 50%

CaCO₃

Above calcite saturation horizon: Preservation rate $\sim 30 - 90\%$

Below: Drops to 0%

Biogenic Silica (opal)

Median, throughout oceans: $\sim 10\%$

In 80% of areas studied, preservation rate < 15%

A specific example: Balance of fluxes in the central equatorial Pacific Berelson et al., 1997, DSR II 2251-2282

Figure by MIT OCW.

Burial : measured accumulation rates

Remineralization : in situ benthic flux chamber determinations

Rain : sediment traps

Benthic Fluxes >> Burial Rates: Does it matter?

<u>Goal</u> : To learn about changes in rain rates to the sea floor over time from measurements of sediment accumulation rates

Case 2: D/R constant : R α A

Case 3: D~R, D/R variable: small $\Delta(D/R) \rightarrow Iarge \Delta R$

Some consequences of early diagenesis

- A. Low and variable preservation rates of biogenic components and the interpretation of the sedimentary record
- B. Early diagenesis and atmospheric oxygen... (long time scales)
- C. In the contemporary ocean...
 - Deep-water oxygen consumption
 ~ 50% of O2 consumption below 1000m occurs
 in sediments
 - 2. Denitrification ...

>~ 50% of dentrification in the modern ocean occurs in sediments...

Continental margin sediments: O2 --> 0 near the sediment-water interface !

Figure by MIT OCW.

How sedimentary processes differ from water column processes

<u>Particles!</u> Surface sediments ~ 40-70% particles by weight

can happen in surface sediments

How sedimentary processes differ from water column processes

In sediments,

reactants are supplied from above:

First order approximation*: sediments have a **layered structure**

Mechanism for organic matter oxidation

Familiar Processes:

Pore water profiles : O₂ all done by in situ microelectrode profiling

(µmol/cm2/y)

Interpretation of pore water profiles : 1. Qualitative interpretation

Assume: ** steady state ** + ~ constant porosity & diffusivity, negligible advection

APPLICATION I: IDENTIFICATION OF BEACTION BONES" IN SEDUMENTS.

PORE WATER SOLUTES : SIGNS OF O.M. OX.

Figure by MIT OCW.

Interpretation of profile shapes : quantitative

Steady-state mass balance in a sediment layer: Rate of reaction within the layer = net flux out of the layer

 $R = F_{out} - F_{in}$

Diffusive flux :

$$F = -\phi D_{sed} \frac{dC}{dx}$$

Flux at pt. 1 (x=0) : gives total, net NO3 Production in sediment column

Flux at pt. 2 : gives rate of NO3 consump. By denitrification

Sum of absolute values of Flux at 1 + Flux at 2: Gives rate of NO3 production by oxic Decomposition of organic matter

Example: pore water data 450m water depth, NW Atlantic

Which electron acceptors are used the most in sediments for organic matter oxidation?

Electron Acceptors in Pelagic Sediment ⁽¹⁾								
Site	Region	C _{org} ox. rate (µmol/cm ² /y)	O ₂	NO ₃	Mn(IV)	FE(III)	SO ₄ ²⁻	
MANOP H	E. Eq. Pacific	12.0	99.2	0.8	0.4			
MANOP C	Central Eq. Pac	20.4	98.1	1.6	0.4			
E. Eq. Atlantic	$0-3^{\circ}$ N, $6-16^{\circ}$ W	12.4	93.8	4.4	0.1		1.8	

Electron Acceptors in Continental Margin Sediments

				% of organic C oxidation by different election acceptors					
Location	Water depths	Total Corg ox (µmol/cm ² /y)	O ₂	NO ₃	Mn	Fe	SO ₄		
N.E. Atlantic ⁽¹⁾	208-4500	36-158	67-97	1-8.5	0-2.1	0-1.7	1-20		
N.W. Atlantic ⁽²⁾	260-2510	36-52	74-90	1.8-6.0		- 8-20 -			
N.E. Pac: O2<50 µM ⁽³⁾	780-1440	66-75	5.0-46	41-69	0.1	0.7-1.3	5.7-25		
N.E. Pac: $O2 = 73-145^{(3)}$	1900-4070	36-74	69-75	11-18	0.1-6.9	0.3-0.7	5.6-18		

(1) Lohse et al., 1998; (2) Martin and Sayles, 2004; (3) Reimers et al., 1992

Figure by MIT OCW.

		C _{org} ox. rate (µmol/cm²/y)	% of organic C oxidation by different electron acceptors					
site	region		02	NO ₃ -	Mn(IV)	FE(III)	SO4 ²⁻	
MANOP H	E. Eq. Pacific	12.0	99.2	0.8	0.4			
MANOP C	Central Eq. Pac	20.4	98.1	1.6	0.4			
E. Eq. Atlantic	0-3°N, 6-16°W	12.4	93.8	4.4	0.1		1.8	

Table 3: Electron Acceptors in Pelagic Sediments⁽¹⁾

(1) Summarized from Bender and Heggie, 1984

Table 4:	Electron	Acceptors in	Continental	Margin Sediments
	ANALY CAL	TROUGH DE TRA	COMPLEX CANCEL	AT A CONTRACT OF CONTRACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACT OF A CONT

		Total Corg ox (µmol/cm2/y)	% of organic C oxidation by different electron acceptors					
Location	Water depths		02	NO3-	Mn	Fe	SO4	
N.E. Atlantic ⁽¹⁾	208-4500	36-158	67-97	1-8.5	0-2.1	0-1.7	1-20	
N.W. Atlantic ⁽²⁾	260-2510	36-52	74-90	1.8-6.0	4	- 8-20 -	\rightarrow	
N.E. Pac: O2< 50 μ M ⁽³⁾	780-1440	66-75	5.0-46	41-69	0.1	0.7-1.3	5.7-25	
N.E. Pac: O2 =73-145 ⁽³⁾	1900-4070	36-74	69-75	11-18	0.1-6.9	0.3-0.7	5.6-18	

(1) Lohse et al., 1998; (2) Martin and Sayles, 2004; (3) Reimers et al., 1992

Organic Carbon Burial Rates (and percentages)In Different Ocean Regimes						
Sediment type	Deltaic	Shelf	Slope	Pelagic	Total	
Data from Gershanovich et at. (1974) All sediment types	0 (0)	23 (10)	195 (88)	5 (2)	$\sum_{\Sigma=223}^{223}$	
 Data from Berner(1989) → Terrigenous deltaic-shelf sediments Biogenous sediments (high-productivity zones) Shallow-water carbonates Pelagic sediments (low-productivity zones) Anoxic basins (e.g. Black sea) 	104 (82) 0 0 0 0	0 0 6 (5) 0 1 (1)	0 7 (6) 0 0 0	0 3 (2) 0 5 (4) 0	$104 \checkmark 10 \\ 6 \\ 5 \\ 1 \\ \Sigma = 126$	
 → Recalculation of data from Berner (1989)^a → Deltaic sediments Shelves and upper slopes Biogenous sediments (high-productivity zones) Shallow-water carbonates Pelagic sediments (low-productivity zones) Anoxic basins (e.g. Black Sea) 	70 (44) 0 0 0 0 0	0 68 (42) 0 6 (4) 0 1 (0.5)	0 7 (4) 0 0 0	0 3 (2) 0 5 (3) 0	$ \begin{array}{c c} 70 \\ 68 \\ 10 \\ 6 \\ 5 \\ 1 \\ \Sigma = 160 \end{array} $	

ORGANIC CARBON BURIAL IN MARINE SEDIMENTS

Units are 10^{12} g C yr⁻¹ (parenthetical units = % of total burial)

a Deltaic-shelf sediments were reapportioned assuming that 33% of the sediment discharge from rivers is deposited either along nondelatic shelves or upper slopes, and assuming that those deposits have total loadings of 1.5% organic carbon rather then 0.7% as in delatic regions. Estimates for all other regions remain the same.

Figure by MIT OCW.

The distribution of organic matter in marine sediments :

What determines the observed pattern?

....local productivity?
....variable preservation?

Image removed due to copyright restrictions.

Organic carbon preservation

So:

A correspondence between regions of high 1° productivity and high % $C_{\rm org}$ in sediments,

And:

These regions of high $%C_{org}$ are ALSO regions of low bottom water O₂ in many cases,

And:

It has been shown that some naturally occurring organic molecules REQUIRE O_2 for decomposition

... Does sedimentary $%C_{org}$ (C_{org} accumulation rate, really) depend on:

```
productivity?
preservation? (bw O<sub>2</sub>)
both?
```

"Oxygen Exposure Time" Hartnett et al. (1998) Nature 391, 572-574

Studied 2 areas:

- 1) squares: Washington margin: higher productivity, less intense O_2 min
- *2)* Circles: Mexico margin: lower productivity, intense O_2 min.

Figure by MIT OCW.

"Oxygen Exposure Time" Hartnett et al. (1998) Nature 391, 572-574

They defined "oxygen exposure time":

And examined its effect on C_{org} "burial efficiency" (= burial rate / rain rate)

"Oxygen Exposure Time" Hartnett et al. (1998) Nature 391, 572-574

Figure by MIT OCW.