Introduction to Marine Radiochemistry

- 1. Isotopes and radioactive decay
- 2. Mathematical description of radioactive decay
- 3. Decay of a parent isotope to a stable daughter

Example: radiocarbon dating

4. Decay series

Math U, Th series in oceanography Examples : Th isotopes

Atoms and Chemical Elements

Atom: a nucleus surrounded by electrons:

Atomic radius ~ 10^{-8} cm

Nuclear radius ~ 10^{-12} cm

Nuclear density ~ 10^{14} g/cm³ !

The nucleus consists primarily of

positively charged protons

electrically neutral neutrons

A chemical element is characterized by a specific number of protons in its nucleus; different isotopes of an element contain different numbers of neutrons

Notation

- Z = atomic number (= number of protons in nucleus)
- N = neutron number
- A = Z + N = mass number

(the "92" is redundant with "U" and is usually omitted)

Or, an element with several isotopes:

$${}^{12}_{6}C, {}^{13}_{6}C, {}^{14}_{6}C$$

Holden, N. E., and F. W. Walker. *Chart of the Nuclides*. 11th ed. Schenectady, NY: General Electric Co., 1972. Image removed due to copyright restrictions.

Chart of the nuclides: expanded view

Holden, N. E., and F. W. Walker. *Chart of the Nuclides*. 11th ed. Schenectady, NY: General Electric Co., 1972. Image removed due to copyright restrictions.

The unstable nuclides -- "radionuclides"

If so many nuclides are unstable, why are they around?

- Formed during initial nucleosynthesis, but decay very slowly: e.g., ²³⁸U, ²³⁵U, ²³⁵U, ²³²Th
- 2. Formed by decay of slowly-decaying parent isotope
- 3. Formed by a naturally occurring process, e.g., comsogenic isotopes: ¹⁴C
- Anthropogenic: e.g. nuclear bomb testing and nuclear energy production, e.g., Pu isotopes, ³H, ¹³⁷Cs,...

Example : β - Decay

Neutron $\longrightarrow \Rightarrow proton += electron$

For example,

 $^{40}_{19}K \rightarrow \frac{40}{20}Ca + \beta^{-=} + \overline{\nu} + = Energy$ $N_{daughter}$ N_{parent} -1 Z_{daughter} Z_{parent}+1 •We can measure A_{daughter} A_{parent} β=particles

Figure by MIT OCW.

Figure by MIT OCW.

Example : α =decay

Decay by emission of a ⁴He nucleus...

50:

The rate law is
$$\frac{dN}{dt} = -\lambda N$$
Adecay constant

often measured : decay rate ... Commonly used whit is the activity = λN e.g. in "dpm" = disintegrations per minute

ACTIVITY AND CONCENTRATION
Example 1:
Say: Conc. of ²³⁰Th = 1 × 10⁻¹² moles/2
Then:

$$\lambda_{230}Th = 1.75 \times 10^{-11} min^{-1}$$

 $h = 1 \times 10^{-12} mol \times 6.023 \times 10^{23} atoms \times 1.75 \times 10^{-11} min^{-1}$
 $h = 1 \times 10^{-12} mol \times 6.023 \times 10^{23} atoms \times 1.75 \times 10^{-11} min^{-1}$
 $r = 10.56 dpm$
Example 2:
Suppose: A sediment has 2 dpm of
both ²³⁸U and ²³⁴Th
 $\lambda_{238}U = 2.92 \times 10^{-16} min^{-1}$
 $\lambda_{234}Th = 2.0 \times 10^{-5} min^{-1}$
Concentrations:
²³⁸U: 2 dpm × $\frac{1}{2.92 \times 10^{-16} min^{-1}} = 6.8 \times 10^{15}$
 $\frac{234}{10}Th = 2 dpm \times \frac{1}{2.0 \times 10^{-5} min^{-1}} = 1 \times 10^{5}$

Commonly Used DEFINITIONS
Using the rate law,

$$\frac{dN}{dt} = -\lambda N$$
with

$$N(t=0) = N_0$$

$$\Rightarrow \boxed{N = N_0 e^{-\lambda t}} = Amount of radionuclid
present vo. time
$$(1 + ALF LIFE (ty_2))$$
• The time it takes for 50% of the
atoms present to decay

$$0.5 N_0 = N_0 e^{-\lambda t} \frac{t_2}{t_2}$$

$$= \ln (0.5) = -\lambda t \frac{t_2}{t_2}$$

$$= \frac{1}{\lambda} \approx \frac{0.693}{\lambda}$$$$

Example:

$$238$$
 ||: $t_{1/2} = \frac{\ln 2}{2.92 \times 10^{-16} \text{ min}^{-1}} = 4.51 \times 10^{9} \text{ years}$
 234 || $t_{1/2} = \frac{\ln 2}{2.92 \times 10^{-16} \text{ min}^{-1}} = 24.1 \text{ days}$

(2) MEAN LIFE (2)
• The average lifetime of
an atom...

$$t = -\frac{i}{N_0} \int_0^{N_0} t \, dN$$
 (1)
From the rate law,
 $\frac{dN}{dt} = -\lambda N \implies dN = -\lambda N \, dt$
and $N = N_0$ at $t = 0$
 $N = 0$ at $t = \infty$
 $\Rightarrow (i)$ can be transformed to
 $t = -\frac{i}{N_0} \int_0^{\infty} -t \, k \, N \, dt$
 $= -\frac{i}{N_0} \int_0^{\infty} \lambda t \, N_0 e^{-\lambda t} \, dt$
 $= -\lambda \int_0^{\infty} t e^{-\lambda t} \, dt$
Solution:
 $t = -\frac{i}{N_0}$
• The amount present decays to $\frac{1}{2} \cdot N_0$
 $during time t$
• $t = t_{N_0} \times \frac{1}{2} \times 1.443 \times t_N$

ONE PROF METHODY OF OBTAINING AGES FROM RADIONUCLIDE MEASUREMENTS I Measure the quantity of the muchido present in the sample ... IF : . Know the amount incorporated when the sample was formed · know there have been no additions or nemovals (other than by decay) since formation THEN: USE : N(+) = Noe - Xt Log. of both sides => Age = t = 1 ln No Example: 14C DATING · Variations in atmosphere/ocean "4C · t/2 (142) ~ 5730 yrs Age limit ~ 30,000 yrs.

KADIOCARBON DATING CONVENTIONS
The age equation:
Age =
$$\frac{1}{\lambda_{Me}} \ln \left[\frac{A_0}{A}\right]$$

(D) Results reported as
"fraction modern" = $\frac{A}{A_0}$
"Modern" is defined to be
95% of the activity in 1950
of an exalic acid standerd,
after mating a specified
correction for C isotope
fractionation
(2) "Radiocarbon Age"
= 8033* In $\left[\frac{A_0}{A}\right]$
for historic reasons, an old
value of λ - incorrect ! - is
used.

(3)
$$\Delta^{14}C \quad 1000 * \left(e^{=(date - 1950)} * = f_m - 1 \right)$$

The "life cycle" of a carbon-14 atom. Created in the atmosphere by the collision of a neutron (produced by primary cosmic-ray protons) with a nitrogen atom, the average ${}^{14}C$ atom "lives" for 8200 years. Its life is terminated by the ejection of an electron with returns the atom to its original form, ${}^{14}N$.

- ${}^{14}C$ is formed in the atmosphere.
- Rate of formation depends on cosmic ray flux
- 1/2 life = 5730 years

Since (1) The frue to is unlikely to be the same as the defined A (2) The dightly incorrect & is used (3) There may be "reservoir corrections" Calibration curves must be used to convert conventional, "radiocarbon date" to a true, calendar date.

Figure by MIT OCW.

Figure by MIT OCW.

Figure by MIT OCW.

DESCRIBING DEZAY IN A DECKY SERIES N, ~ N2 ~ N3 - ... stable and product $\frac{dN_{i}}{dt} = -\lambda_{i}N_{i} ? N_{i} = N_{i}e^{-\lambda_{i}t}$ $N_{i}(t=0) = N_{i} ?$ Parent, N₁ 2) $\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2$ = $\lambda_1 N_1^{p} e^{-\lambda_1 t} - \lambda_2 N_2$ $N_2(t = 0) = N_2^{o}$ Daughter, N₂ $\implies N_2 = N_2^{\circ} e^{-\lambda_2 t} + \frac{\lambda_1 N_1^{\circ}}{\lambda_2 - \lambda_1} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)$ What if : Longer-lived parent decays to shorter-lived daughter, i.e., $\lambda_2 \gg \lambda$,? THEN: a) $e^{-\lambda_2 t} < e^{-\lambda_1 t}$ b) 2, << 22 $\Rightarrow N_2 = N_2^{\circ} e^{-\lambda_2 t} + \frac{\lambda_1 N_1^{\circ}}{\lambda_1} e^{-\lambda_1 t}$

Figure by MIT OCW.

Use:

$$\int 234 \text{ U}$$
 : conservative, $t_{1/2} = 245,000 \text{ yr}$
 $\int 230 \text{ Th}$: particle , $t_{1/2} = 75,200 \text{ yr}$
reactive , $t_{1/2} = 75,200 \text{ yr}$

Apply the same model:

$$2 \operatorname{scav} = \frac{1}{\lambda_{230}} \left[\frac{\frac{A_{230}}{A_{234}}}{1 - \frac{A_{230}}{A_{234}}} \right]$$

Figure by MIT OCW.

Note: Azzu
$$n 1.14 \times AzzBu = 2.7 dpm/l
 $2_{scav} = 108,000 \left[\frac{.001/2.7}{1 - .001/2.7} \right]$
= 40 years$$

The 230 Th is nearly all removed from the water column it must fall with particles to the sediments. A particle reaching the sediment surface contrains ; 234 ll in mineral lattice 230Th adsorbed 1 to particle in water column with this 234 Excess 230 Th, which decays supported zooth, constant over over time time SUPPOSE : O sediment accumulates at a constant rate, S Then: depth in sediments is related to time: Z=t·S => t= = =/s 3 sedimenting particles carry a constant flux of 230 Th

IDEALIZED 230TH PROFILE IN SEDIMENT

