2D Inversion

We begin with the "primitive equations" which make only the hydrostatic, beta-plane assumptions. We write them in a coordinate system (x, y, ξ) where ξ is a function of pressure.

From 12.802 "coordinates" notes, we can write the momentum, mass, and thermodynamic equations as

$$
\begin{gather*}
\frac{D}{D t} \mathbf{u}+f \hat{\mathbf{k}} \times \mathbf{u}=-\nabla \varphi \tag{p.1}\\
\frac{\partial}{\partial \xi} \varphi=g \frac{\rho_{c}}{\rho} \tag{p.2}\\
\nabla \cdot \mathbf{u}+\frac{1}{\rho_{c}} \frac{\partial}{\partial \xi}\left(\rho_{c} \omega\right)=0 \tag{p.3}\\
\frac{\partial}{\partial t} \eta+\mathbf{u} \cdot \nabla \eta+\omega \frac{\partial}{\partial \xi} \eta=0 \tag{p.4}
\end{gather*}
$$

where φ is the geopotential height of a surface of constant ξ (coincident with a surface of constant pressure). The entropy is η, and ρ_{c} is the density associated with the coordinate change

$$
\frac{\partial p}{\partial \xi}=-g \rho_{c}
$$

The PV is

$$
\begin{equation*}
q=\frac{1}{\rho_{c}}\left(\nabla_{3} \times \mathbf{u}+f \hat{\mathbf{k}}\right) \cdot \nabla_{3} \eta \tag{pv}
\end{equation*}
$$

Ocean form:
In the Boussinesq approximation, $\rho=\rho_{0}(1+\sigma), \rho_{c}=\rho_{0}$ and we simply use $\eta \propto-\sigma$. Then

$$
\frac{\partial}{\partial \xi} \phi=-g \sigma \quad(o c-h y d)
$$

and

$$
q=-\left(\nabla_{3} \times \mathbf{u}+f \hat{\mathbf{k}}\right) \cdot \nabla_{3} \sigma \quad(o c-p v)
$$

Atmospheric form:
Here we choose ξ so that $\rho_{c} / \rho=\theta / \theta_{0}$. Using the relationship between θ, ρ, p

$$
\frac{\theta}{\theta_{0}}=\left(\frac{\rho}{\rho_{0}}\right)^{-1}\left(\frac{p}{p_{0}}\right)^{1 / \gamma} q
$$

we have

$$
\xi=H_{s} \frac{\gamma-1}{\gamma}\left[1-\left(\frac{p}{p_{0}}\right)^{(\gamma-1) / \gamma}\right]
$$

Then

$$
\begin{array}{rr}
\frac{\partial}{\partial \xi} \phi=g \frac{\theta}{\theta_{0}} & (a t m-h y d) \\
q=\frac{1}{\theta_{0}}\left(\nabla_{3} \times \mathbf{u}+f \hat{\mathbf{k}}\right) \cdot \nabla_{3} \theta & (a t m-p v)
\end{array}
$$

2D forms

Now we assume the fields are independent of x. Then

$$
q=\left(f-\frac{\partial u}{\partial y}\right) \frac{\partial b}{\partial z}+\frac{\partial u}{\partial z} \frac{\partial b}{\partial y}
$$

(where we've used the buoyancy b for either $-\sigma$ or θ / θ_{0} and z for ξ). Using the geostrophic equation $f u=-\frac{\partial \phi^{\prime}}{\partial y}$ and hydrostatic equation $b^{\prime}=\frac{\partial \phi^{\prime}}{\partial z}$, where $b=\int^{z} N^{2}+b^{\prime}$, gives

$$
q=f N^{2}+f \frac{\partial^{2} \phi^{\prime}}{\partial z^{2}}+\frac{N^{2}}{f} \frac{\partial^{2} \phi^{\prime}}{\partial y^{2}}+\frac{1}{f} \frac{\partial^{2} \phi^{\prime}}{\partial y^{2}} \frac{\partial^{2} \phi^{\prime}}{\partial z^{2}}-\frac{1}{f}\left(\frac{\partial^{2} \phi^{\prime}}{\partial y \partial z}\right)^{2}
$$

This is the form we wish to invert for ϕ^{\prime} and therefore u and b^{\prime}.

As a basically elliptic equation, we need to specify conditions on the four boundaries of the domain. On the top and bottom, we specify $b^{\prime}=\frac{\partial \phi^{\prime}}{\partial z}$; on the left and right, we have a number of choices - and they do matter.

MIT OpenCourseWare
http://ocw.mit.edu

12.804 Large-scale Flow Dynamics Lab

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

