Two layer adjustment

(See Dewar and Killworth(1990), J. Phys. Oceanogr., 20, 1563-75 for a more accurate treatment.)

If the upper layer has density ρ_{1} and thickness h_{1}, and the lower layer has ρ_{2}, h_{2}, the upper layer pressure is

$$
\frac{1}{\rho_{1}} \nabla p_{1}=g \nabla\left(h_{1}+h_{2}\right)
$$

while the lower layer pressure is

$$
\frac{1}{\rho_{2}} \nabla p_{2}=\frac{\rho_{1}}{\rho_{2}} g \nabla h_{1}+g \nabla h_{2}
$$

From geostrophic balance for the azimuthal flow (neglecting the cyclostrophic terms), we get

$$
f\left(v_{1}-v_{2}\right)=g^{\prime} \frac{\partial}{\partial r} h_{1} \quad, \quad g^{\prime}=\frac{\rho_{2}-\rho_{1}}{\rho_{2}} g
$$

Conservation of PV tells us

$$
\zeta_{i}+f=f \frac{h_{i}(r)}{h_{i}^{0}\left(r_{0, i}\right)}
$$

where $r_{0, i}$ is the initial radius of the annulus which settles at radius r and h_{i}^{0} represents the initial thickness at the initial position.

If we subtract the two PV equations, we find

$$
\zeta_{1}-\zeta_{2}=\frac{g^{\prime}}{f} \nabla^{2} h_{1}=f \frac{h_{1}(r)}{h_{1}^{0}\left(r_{0,1}\right)}-f \frac{h_{2}(r)}{h_{2}^{0}\left(r_{0,2}\right)}
$$

Since we've already neglected order Rossby number terms in the balance statement, we might as well linearize the h values also:

$$
h_{1}=H_{1}+\eta-h \quad, \quad h_{2}=H_{2}+h
$$

where η is the surface displacement and h the interface displacement. Our equation becomes

$$
\frac{g^{\prime}}{f} \nabla^{2}(\eta-h)=\frac{f}{H_{1}}\left(\eta-\eta^{0}-h+h^{0}\right)-\frac{f}{H_{2}}\left(h-h^{0}\right)
$$

and we also ignore the difference between r_{0} and r. Finally, we neglect surface displacements compared to interface displacements and find

$$
\nabla^{2} h=R_{d}^{-2}\left(h-h^{0}\right)
$$

with $R_{d}^{-2}=f^{2} / g^{\prime} H_{1}+f^{2} / g^{\prime} H_{2}$.
Exterior: Outside $r=a$, we have $h_{0}=0$ and

$$
h=A K_{0}\left(r / R_{d}\right)
$$

Interior: Inside $r=a$, the initial PV differs from the value at infinity so that $h_{0}=H$ and

$$
h=H+B I_{0}\left(r / R_{d}\right)
$$

Matching together the values and the slopes of h gives

$$
H+B I_{0}\left(a / R_{d}\right)=A K_{0}\left(r / R_{d}\right) \quad \text { and } \quad B I_{1}\left(a / R_{d}\right)=-A K_{1}\left(a / R_{d}\right)
$$

Our solution is therefore

$$
h= \begin{cases}H\left[1-\frac{a}{R_{d}} K_{1}\left(\frac{a}{R_{d}}\right) I_{0}\left(\frac{r}{R_{d}}\right)\right] & r<a \\ H I_{1}\left(\frac{a}{R_{d}}\right) K_{0}\left(\frac{r}{R_{d}}\right) & r>a\end{cases}
$$

Radial profiles for different $\gamma=a / R_{d}$ values ($\gamma=0.25$ is the lowest curve).

MIT OpenCourseWare
http://ocw.mit.edu

12.804 Large-scale Flow Dynamics Lab

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

