
Internal Waves 
 
We now examine internal waves, for the case in which there are two distinct 
layers and in which the lower layer is at rest. This is an approximation of the 
case in which the upper layer is much thinner than the deeper layer, but this 
makes the dynamics much simpler. The linearized equations of motion (for 
small perturbations) are as before, but now for the upper layer only: 
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where H1 is the total thickness of the upper layer. The upper surface, h, is 
free to move vertically, as is the bottom of the upper layer. Recall before that 
in this case, there can be no pressure gradients in the lower layer (layer 2) if 
it is to remain at rest. If perturbations to the internal layer interface are small, 
and its depth is otherwise at a constant H01, then the vanishing of pressure 
gradients at any depth in the lower layer, z = -z0, requires the following: 
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Upward displacements of the free surface must be accompanied by 
downward displacements of the interface to prevent pressure gradients in the 
lower layer. We have defined the displacements of the interface so that a 
downward displacement of the interface is equivalent to a positive value of 
h1. The reason for this will be apparent shortly. Since the density difference 
is going to be a small compared to the density of the surface layer 
(∆ρ/ρ<<1) , changes in the free surface are going to be small compared to 
those of the interface. Thus, in the third equation above, we can ignore 
variations in the surface height compared to changes in the interface height. 
When we now substitute this approximation for h and H1 into the above 
equations we obtain: 
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Note that these are exactly the equations for a homogeneous fluid of uniform 
density with two exceptions: the water depth now becomes the mean depth 
of the upper layer (H  H01) and the gravity term becomes a reduced gravity 
(g  g’). Thus all of the previous types of surface waves can be 
immediately taken over for internal waves with these two differences in 
mind. The small differences make some substantial changes in the properties 
of these waves. Consider two quantities which were important for all of the 
surface waves: the shallow water phase speed c and the Rossby Radius of 
deformation, a. These will take on different numerical values. We need to 
first estimate some basic quantities, such as the density ratio and the mean 
interface depth. For this, we will use two stations from either side of the 
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Gulf Stream (they were used in one of the homework problems

 
 
 
 
 
 
 
 
 
 
 
 



In the above figure, two hypothetical cases for dividing up the water column 
to two layers have been maded. In the first, the station (#65) is south of the 
ulf Stream in a thick layer of subtropical mode water (Eighteen Degree 
ater). We have used a surface density appropriate for what might be found 
 winter and a pycnocline depth of 750m. The stations were occupied in 

e see that the phase speed has been reduced from 200 m/s to 2-3 m/s and 
the radius of deformation is reduced from 2000km to 20-30km (for a value 
of f  of 10-4 s-1.) While this change in two of the key parameters governing 
wave motion is two orders of magnitude, there is no qualitative difference in 

e types of waves or their dispersion relations. We will briefly review this 

Kelvin waves: 
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September when the seasonal pycnocline is fully developed. In the second, 
we used a shallower pycnocline (200m) but a larger density ratio (2x10-3). 
The phase speed and radius of deformation are given by: 
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Internal gravity/inertial waves: 
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Rossby waves: 
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A smaller radius of deformation, a, means, among other things, that 
aroclinic scales are much smaller than barotropic scales: the adjustment 

h a column of upper layer fluid is released and allowed to 
djust to the rotation of the earth will yield a much narrower geostrophic 

current and a smaller ‘scale’ for the slumping of the interface in the upper 
layer. Whether Poincaré (or internal/inertial gravity) waves or Rossby waves 
are ‘long’ or ‘short’ compared to the radius of deformation will be greatly 
affected: most of these that were ‘short’ for barotropic motion will be ‘long’ 
for baroclinc waves. The frequency gap between the lowest frequency 

ternal wave and the highest frequency internal Rossby wave will be much 
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larger, because the lower limit for the former is the same as before (s
inertial frequency) but the upper limit for the latter is much smaller: intern
Rossby waves have much longer periods than their barotropic counterparts.
 
For example, we estimated earlier that the minimum period (maximum 
frequency) of a bartopic Rossby wave would be 3.6 days. For the baroclinic 
case just considered, this would become 360 days. In other words, we woul
expect no propagating baroclinic Rossby waves to have a period shorter than 
about a year! 
 
Baroclinic motions can have large amplitude displacements of the 
pycnocline: of 100m. These can be seen at the ocean surface, although 
reduced in amplitude by a factor of ∆ρ/ρ. The satellite altimeter has 
p
amplitudes be small (10 cm), the periods are long and thus easily sample
the 10 day repeat orbit of the Topex-Poseiden altimeter. In a paper by 
Chelton and Schlax (Science, 1996). They showed a space-time series of 
altimeter variability at selected latitudes in the North Pacific Ocean, which 
we will now d
 
In the diagram at the right, altimeter data have been filtered to look
having periods between 0.5 and 2 yrs. For the three years of data display
surface highs (depressions of the pycnocline) and lows can be seen to



propagating to the west, most clearly in 
the western part of the Pacific. These 
have phase speed of order 10 cm/s and 
are consistent with speeds of the lowest 
mode baroclinic Rossby wave (similar 
to our approximation above). While the 
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nd occasionally break. A good description of these can be seen in a paper 
by Haury, Briscoe and Orr (Nature, 1979), which will be discussed in class. 

p
expected, and this has been a focus of
much debate in the literature, the 
evidence for the existence of these 
waves and their importance to lon
term variability in the ocean is 
undisputed. Also evident is the 
evidence that baroclinic waves 
propagate faster towards the equator. 
This can be understood in terms of t
variation of the radius of deformation 
with latitude: in the tropics, where f is
smaller, the radius of deforma
larger than in mid-latitudes. Since long 
Rossby waves propagate have a p
speed that is proportional to the square 
of the radius of deformation (cp = 
as one approaches the equator, wav
than at higher latitudes.  At 21N abo
to cross the domain plotted, whe
39N. Of course the time series is
see this.  
 
Internal waves are responsible for much
open ocean observations. This can be deduced by the relationship between 
observed horizontal and vertical velocities and how they depend upon 
frequency. In shallow water, such as Massachusetts Bay, internal waves
the seasonal thermocline (pycnocline) are generated by tidal flow over
Stellwagen Bank and can produce a visible signature at the ocean surf
(due to surface convergences and divergences and their effect on surface 
waves) and substantial mixing at the ocean bottom. In fact, they can be a
major source of nutrient supply to the upper ocean as these steep waves mix 
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