
 
Rotation 101 (cont.): Effects of rotation on a sphere: f- and β-planes 
  
We will follow the convention of many before us and try to simplify the 
effects of the curvature of the earth on the dynamics of particles in this 
rotating system. An approximation is made in which the position of a 
particle in a spherical geometry (λ,θ,r) is expressed in terms of cartesian 
variables (x,y,z) for small excursion from a reference point. 
 
Consider the following figure. 
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On the surface of the 
sphere, we choose a 
reference point at a 
longitude, latitude, and 
radius denoted by the 
coordinate (λ0,θ0,r0), with 
the Cartesian coordinates 
of (x0,y0,z0). For small 
distances from this point, 
we can write the 
following: 
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Gravity is in the radial or “z” direction and the rotation vector Ω, velocity v, 
and Coriolis acceleration 2 Ω x v have the following components: 
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Because vertical velocities are much smaller than horizontal velocities for 
large-scale, low frequency motion, and because the basic balance in the 
vertical is hydrostatic, the last equation above can be approximated as 
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the Coriolis parameter, f , is the vertical component of the rotation vector. 
This approximation will shaky in high latitude regions where vertical 
convection in winter can create large vertical velocities and at the equator 
where large zonal currents can affect the hydrostatic balance.  
 
One problem with the Coriolis parameter above in trying to understand the 
simplified physics of the ocean is that it is not a constant [sinθ  varies with 
latitude]. In the problems we will consider in this course, the ocean basin can 
be considered small enough so that locally, some further simplifications can 
be made. We will consider two examples called the “f-plane” and “β–
plane” approximations. 
 

 



 
We now insert into the above the fact that θ = θ0 + θ’, where θ ’<<1, & use 
the trigonometric identity for sin(a+b)=sin(a)cos(b)+cos(a)sin(b). Now as 
seen in the above figure, for small angular changes (expressed in radians) 
from the reference latitude, cos(θ’) ~  1 & sin(θ’) ~  θ’.  
 
Thus for the vertical component of the rotation vector, f , we get the 
following: 
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An “f-plane” approximation assumes that the vertical component of the 
rotation vector is constant. The “β-plane” approximation assumes that f  is 
constant unless it’s y-derivitave is taken, in which df/dy is replaced by 
another constant equal to β.  
 
The homework problem “pucks_on_ice” is done on an f-plane; our work on 
the wind-driven circulation will require use of the β-plane. The following 
material will be needed when we begin the section on the ocean circulation, 
chapter 3 in the text. 
 



Fluid equations for barotropic and baroclinic flows 
 
Thus far we have dealt with solid objects moving around on a solid surface 
with little or no fluidity. But in fact we have almost derived all of the 
equations needed for the study of a layer of fluid of uniform density on the 
surface of the spherical earth! There is one last item needed to make the 
transition from pucks on ice to the general circulation of the ocean: it is that 
bumps on the surface of a fluid will not stay there: motion will be away from 
the bump and its surface expression will vanish unless sustained by some 
force.  
 
For those of you with no experience in fluid dynamics, this may appear to be 
a formidable hurdle to overcome. We have tried to make this as painless as 
possible: starting with pucks on a frozen ocean, yet ending up with the 
equations physical oceanographers use to understand their observations. For 
those with fluids in their past, this may seem less rigorous than the 
traditional method of derivation of the Navier-Stokes equations for a rotating 
fluid. In this course, we will not be trying to solve the complete sets of fluid 
motion in either the barotropic or baroclinic limits. In fact, this is impossible 
as non-linearity and time dependence due to turbulence precludes any 
general solution. So don’t worry about solving them! We will simplify them 
for particular problems, however, and want them exposed now for later 
reference. 
 
Consider the following diagram. 
 
A layer of fluid of density ρ lies over a sloping bottom (z=-H) and a free 
surface. Because of a bump of fluid on the surface, there will be pressure 
gradients created that try to force the underlying fluid away from the surface 
bump. In the lower panel, we consider a column of fluid of sides Lx,Ly and 
height H+h (the total depth of the fluid). 
 
Fluid can escape the box by flowing thru the imaginary sides, but not 
through the bottom, which is solid. Because fluid can leave the box, the free 
surface level can change. Here we do a mass (or volume balance) for the 
box, whose volume, V is  Lx Ly(H+h). 
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=  net loss of fluid in x-dir. 
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= net loss of fluid in y-dir., 
 
where lhs refers to the “left hand side” of the box. This net loss of fluid must 
be balanced by a change in volume. So we can write a volume balance as 
follows (first simplifying by letting Lx=Ly=L): 
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So we now have the following equations of motion for a fluid ocean of 
uniform density: 
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For fluids, we can either track particle motion [Lagrangian formulation] or 
look at force balances at a position, while different particles flow by 
[Eulerian formulation]. Thus far, we have done the former, but not using any 
fluid dynamics. When one does, the time derivatives take on different 
meaning in the two formulations. This is given in the last of the above 
equations, where a time derivative following a particle becomes an advective 
derivative at a point (x,y) in the Eulerian formulation. This reflects the fact 
that at a point, there can be changes in time because of external forces and 
because different particles with a different history are streaming by the point 
of observation. As far as any mathematics needed for the rest of this course, 
the difference is immaterial since we will be looking at simple linearized 
versions of the above equations. Yet we will be using them to understand the 
dynamics of mid-latitude gyres, the deep tropics and equator, and time 
dependent motions such as tides, Rossby, and topographic waves, in which 
we consider the whole water column responding as one with no density 
variations in the vertical. Motions of this nature have been called 
“barotropic” and are an important part of the ocean circulation. 
 
However, we know that density does vary in the vertical and that ocean 
currents are not uniform with depth. The part of the velocity field that varies 
in the vertical is known and the “baroclinic” velocity, and our equations 
need to be slightly modified to account for this component. We will now 
briefly discuss what needs to be modified in our set of “grand equations” for 
the baroclinic flows.  



 
First of all, we must recognize that horizontal gradients of pressure will act 
to cause horizontal acceleration of the fluid, subject to the presence of the 
Coriolis force. Recall that we have employed a hydrostatic balance in the 
vertical in which vertical gradients of pressure are balanced by gravity. So 
the additional equation is the hydrostatic balance, which states that 
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In the event that the hydrostatic balance is upset, there will be vertical 
accelerations of the fluid.  
 
The next modification to the equations of motion is that we need to replace 
horizontal variations of the ocean surface, with horizontal variations of 
pressure, as these can now vary in the vertical away from the ocean surface. 
So we have 
 

y
p

y
hg

x
p

x
hg

∂
∂

→
∂
∂

∂
∂

→
∂
∂

ρρ
1,1

 

 
Next, we must recognize that the advective derivative must include vertical 
velocity and a  “z” derivative. Thus 
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Finally, the last equation of the earlier group, also known as the continuity 
equation, expresses the fact that flows into a control box must be balanced 
by flows out of the volume or changes in the free surface. Away from the 
free surface, this must now be modified by considering a small cube of side 
L within the fluid. The volume flux across the six faces of the cube now 
becomes 
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since by definition, we have a fixed volume of fluid in the cube and L is 
constant on all sides of the cube. So for future reference, the grand set of 
equations which can account for vertical variations in the flow (and for the 
case in which there is no vertical flow variation) now become 
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We have now four equations for the five dependent variables (u,v,w,p,ρ) 
subject to external forces which have not yet been further defined at this 
stage. The frictional force, r, is subtle in that it is expected to be large near 
solid boundaries of the fluid and near the ocean surface where turbulence 
levels are large and can act to oppose or create motion. The usual method for 
understanding of friction would take us too far into fluid dynamics. For the 
present, understand that friction is important where lateral stresses applied at 
boundaries of the fluid can force the motion of the fluid, such as the top 
[where we have wind stress forcing the ocean], and on the bottom and sides 
of the ocean, where lateral stresses act to impede the motion of the fluid. The 
5th equation (missing above) prescribes how density is affected by advection 
& external forces. We will be dealing with this later. For now, consider it 
prescribed! 
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