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1. Equation of Radiative Transfer 
 
Specific Intensity of Radiation Transfer 
 
 

( ) ( )
( ) ( ) ( ) ( )

E Energy
I , , z

dA Area d Solid Angle d frequency int erval dt time
ν

ν θ φ =
Ω ν

 

 
 

 
 
 
In an interval ds, we lose intensity by extinction (scattering and absorption) and gain it by 
emission and scattering. 
 
Lambert’s Law: The extinction process is linear, independently in the intensity of radiation and 
in the amount of matter, provided that the physical state (i.e. temperature, pressure, 
composition) is held constant. 
 
From Lambert’s Law, the change of intensity along a path ds is proportional to the amount of 
matter in the path and to the intensity of radiation: 
 

( )dI extinction losses I dsν ν= −α ν  where να = volume extinction coefficient     (1) 

 
The argument that the extinction process is linear in the amount of matter applies with equal 
force to the emission process. Therefore, we write: 
 
 ( )dI gains J dsν ν= α ν          (2) 

 
where we have defined the source function, Jν . 
 
The extinction coefficient can be expressed as the sum of an absorption coefficient ( )kν  and a 

scattering coefficient ( ) . νσ

 
kν να = + σν           (3) 
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The most general problem in atmospheric radiation, therefore, has a source function consisting 
of two parts, 

( ) ( )J k J thermal J scatteringν ν ν ν ν να = + σ       (4) 

 

where ( )k J thermal
4
ν

νν ν

ε
= ε =

π
 for isotropic emission. 

 
(J scatν νσ ) , on the other hand, is given by two terms, describing the diffusely scattered 

radiation and the singly scattered incident beam of radiation (the sun). 
 

( ) ( )( ) ( )dI
, , z I , , z , , z

ds
ν

ν νθ φ = −α θ φ + ε θ φ  

  ( ) ( )' '
, ,

d
P , , , ' ' I z

4ν

Ω
+σ θ φ θ φ θ φ

π∫ ∫      (5) 

  ( ) (ν ν

π
+σ −α θ θ )φ θ φ

π 0 0

F
exp z cos P , , ,

4 0

)

 

 
 

where P (  is the scattering phase function (or scattering diagram) and is normalized 

such that 

, , ,' 'θ φ θ φ

4

d
P

4π

Ω
=

π∫ 1 where dΩ is an element of solid angle. The shape of the phase function can 

be usefully characterized by a single number, 
π

Ω
< η > = η

π∫
4

d
cos (cos )p

4
 where η  is the scattering 

angle and <cosη> is called the asymmetry parameter (which varies between 1 and -1 and is 0 
for isotopic scattering. 
 
Dividing by ( )zνα , we have:  

 

( ) ( ) ( ) ( )
( )
zdI1

, ,z I , ,z
z ds z

νν
ν

ν ν

ε
θ φ = − θ φ +

α α
 

 

    
( )
( ) ( ) ( )' '

, ,

z
P , , , ' ' I z sin 'd 'd '

4 z
ν

ν

σ
+ θ φ θ φ θ φ θ θ φ

π α ∫ ∫  

            (6) 

    
( )
( ) ( )( ) ( )ν

ν
ν

σ π
+ −α θ θ φ θ φ
α π 0 0

z F
exp z z cos P , , ,

z 4 0  

 
 
Let us now introduce the following definitions: 
 

dz
d dz ds coν ντ = −α = μ = θ

μ
s        (7) 

 
where = ντ vertical optical depth measured from the top of the atmosphere . 

Note that this coordinate differs for each 

( )0 at zντ = = ∞

ν . 
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We then obtain the following Radiative Transfer Equation in differential form in a “plane 
parallel” atmosphere: 

( ) ( ) ( )
( )

( )
( ) ( ) ( )νν ν ν ν

ν ν
ν ν ν ν ν

τ μ φ ε τ σ τ
μ = τ μ φ − − θ φ θ φ τ θ φ θ θ Φ

τ α τ πα τ ∫ ∫ ' ' ' ' ' 'dI , ,
I , , P , , , I , , sin d d

d 4
 

 

  
( )

( ) ( )( ) (ν ν
ν ν

ν ν

σ τ π
− −α τ θ θ φ θ φ

πα τ 0 00

F
exp z cos P , , ,

4
)     (8) 

 
       or  

    

  
( ) ( ) ( )

dI , ,
I , , J , ,

d
ν

ν ν
ν

τ μ φ
μ = τ μ φ − τ μ φ

τ
 

 
where we have defined the source function, ( )J , ,ντ μ φ  as: 

 

( ) ( ) ( )' ' ' ' ' 'J , , P , , , I , , , , d d
4

ν ν
ν ν

ν

ε ω
τ μ φ = + μ φ μ φ τ μ φ μ φ μ φ

α π ∫ ∫  

            (9) 

       ( ) (0 0

F
exp P , , ,

4
ν ν

ν

ω π
+ τ μ μ φ μ

π
)0φ  

 
 

and ν

ν

σ
α

 =  = Single Scattering Albedo. νω

 
Let us also be reminded that the atmosphere in general contains both gases and particulates 
(aerosols). Each has scattering and absorption properties that we need to consider. Thus we 
have: 
 

( ) ( ) ( ) ( )k gases k aerosols gases aerosolsν ν ν ν να = + + σ + σ  

 
There are many cases where the physical situation enables the neglect of one or more of these 
terms and a related simplification of the Radiative Transfer Equation. We will now examine a 
few such cases. 
 
Let us first apply Kirchoff’s Law to our Radiative Transfer Equation. “The ratio of emission and 
fractional absorption in any direction of a slab of any thickness in thermodynamic equilibrium 
equals the black body intensity.” So – in a non-scattering atmosphere, we have 
 

( ) ( ) ( )ν ν ν ν
ν ν

ν ν

ε θ φ τ ε τ π
= =

α α

, , 4
B τ =  Black Body Function 

 

( ) ( )ν ν −

ν
=

3

2 h kT 1

2h 1
B T

c e
  ( ) ( )λ λ −

=
λ

2

5 hc kT 1

2hc 1
B T

e
 

 
where ( )ν ντB  is isotropic 
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This gives us: 
 

( ) ( ) ( ) ( )ν
ν ν ν ν ν

ω
τ μ φ = τ + μ φ μ φ μ φ μ φ τ μ φ

π ∫ ∫
' ' ' 'J , , B P , , , I , , , , d d

4
 

            (9a) 

( )ν ν
ω π τ⎛ ⎞+ μ⎜ ⎟μπ ⎝ ⎠ 0 0

0

F
exp P , , ,

4
φ μ φ  

 
Also if all relevant properties ( ( )ν ν ν να ω τ, ,B ) are horizontally invariant, then I is independent of 

azimuth angle, ( ) ( )i.e. I , , I ,ν ν ν νφ  − τ μ φ = τ μ

 
and we have: 
 

( ) ( ) (
dI ,

I , J
d

ν ν
ν ν ν

ν

μ τ
μ = μ τ −

τ
)τ         (10) 

 
Case I:
 
Let us first consider the simplest case characterized as follows: 
 

a) We observe sunlight of visible wavelengths through a non-scattering atmosphere: 
 

       ( ) ( ) ( )ν ν ν ν ν ν

π
τ << τ << μ τ

π
F

B a    

 
                      

nd also B I ,
4

or 
 

b) Bright, artificial source of radiation shining through an atmospheric path (e.g.- laser): 
 
We then have that ( ) ( )I ,  and the Radiative Transfer 

Equation is simplified to: 
 

      

Jν ν ν νμ τ >> τ

( ) (
dI ,

I ,
d

ν ν
ν ν

ν

μ τ
)= μ τ

τ
μ         (11) 

 
and the solution of this equation is: 
 

     ( ) ( )
o

I

0 0 0
00I 0

dI d
or I , I ,0 exp

I

ντ
ν ν ν

ν ν ν
ν

τ τ⎛ ⎞= μ τ = μ ⎜ ⎟μμ ⎝ ⎠∫ ∫  

 
 
     and since , we have 
 

     

0 cosμ = − θ0

( ) ( )0 0 0
0

I , I ,0 exp cos
ν

ν ν ν
τ⎡ ⎤μ τ = − μ − ⎢ ⎥θ⎣ ⎦

  

 
 
 

Beer’s 
Law 

Bouguer’s Law 
Lambert’s Law 
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If we have I(θo, 0) as a slowly varying function of frequency, ν , and 
 

We define the transmission function, 
0

t exp cos
ντ⎡ ⎤= − ⎢ ⎥θ⎣ ⎦

 

 

    ( ) ( )0
0

I , d I ,0 exp dcos
ν

ν
Δν Δν

τ⎡ ⎤μ τ ν = θ − ν⎢ ⎥θ⎣ ⎦∫ ∫  

 
                                            ( )oI ,0 tΔν= θ  

 
A lot of work has been done to develop methods for computing this mean transmission and we 
will return to this topic and examine it in detail a little later. 
 
Case II:
 
Let us consider a cloudless atmosphere and the infrared portion of the electromagnetic 
spectrum. Due to the approximate separation of the solar emission spectrum and planetary 
emission spectrum (as discussed previously by Prof. Prinn), we now have: 
 

( ) ( )ν ντ ≅ ν τJ B ,  

 
And the Radiative Transfer Equation reduces to: 
 

 
( ) ( ) (ν

ν
ν

μ τ
μ = μ τ − μ

τ

dI ,
I , B ,

d
)ντ         (12) 

 
This is a linear first order equation. If we apply e−τ μ  as an integrating factor, we obtain the 
following equation: 
 

 
−τ μ−τ μ

−τ μ −τ μ
⎡ ⎤⎣ ⎦− = − =

τ μ μ τ

d IedI e B
e I e

d d
       (13) 

 
Lets consider the upward intensity at a level, z (μ > 0). The origin of optical depth is at the top 
of the atmosphere and we will need to integrate from the level, z, to the surface. It is therefore 
convenient to change the variable of integration to z'τ = τ − τ  as we must integrate over optical 
depths ranging from zero to the optical depth at the surface of the earth. Thus, we have Eq. 
14: 
 

( ) ( ) ( )
τ ττ

− τ−τ μ−τ μ −τ μ

τ τ τ

− τ − τ − τ
= τ =

μ μ∫ ∫
s ss

z

z z z

z' 'B ' B
Ie e d ' e dτ     (14) 

 
and finally the solution we are seeking: 
 

 ( ) ( ) ( ) ( ) ( )
τ

− τ −τ μ − τ−τ μ

τ

τ
τ = τ + τ

μ∫
s

s z z

z

z s

d
I I e B e       (15) 

where the subscript, s, in Eqs. 14 and 15 refers to the surface of the earth. 
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And, at the ground we typically have nearly black body emission in the infrared, so I( sτ ) can be 

replaced by ( )τε sB  where ε is an emissivity (near unity) and ( )τsB  is the Planck Black Body 

Function. 
 
And the downward solution is similarly given by: 
 

( ) ( ) ( )
τ

− τ −τ μ τ
τ ↓ = − τ

μ∫
z

z

z
0

d
I B e         (16) 

 
In these equations we’ve dropped the frequency specification for simplification. But – we’ll need 
to keep in mind that optical depth, Planck function and radiation intensity always depend on 
frequency (or wavelength). 
 
If the temperature is known throughout the atmosphere, an exact solution is possible: i.e. – 
( ) ( )( )τ =B B T p  

 

 
 
Consider pressure coordinates for which 
 

τ = −α = − ρ = − χ ρa ad dz k dz k dz  
 

     ak dp dp
since g

g dz
χ ⎛ ⎞= = −ρ⎜ ⎟

⎝ ⎠
 

 
where k  is the absorption cross-section (in cmν

2/gm), aρ  is the absorber mass density and aχ  
is mass mixing ratio of absorber, a. 
 
Now, lets go back to the formal solution of the R.T.Eq. (Eq. 15) and examine the details: 
 

( ) ( )τ ⇒ pB B T  

 

( )
s

s z

z

p
a

p

k
e exp dP

g
− τ −τ μ χ

⇒ −
μ∫        ≡  Transmission 

 

( )z

z

p
a

p

k
e exp

g
− τ −τ μ χ

⇒ −
μ∫ dP  
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and if the ground can be considered black (a reasonable assumption in much of the thermal 
infrared), we have  ( ) ( )ε ν ⇒ ν gB , T B , T

 
So – finally, we have: 
 

( ) ( ) χ
μ ↑= − −

μ∫
s

z

p
a

z g
p

k
I ,P B T exp dp

g
 ground contribution 

 

( )
⎡ ⎤χ χ

+ − ⎢ ⎥
μ μ⎢ ⎥⎣ ⎦

∫ ∫
s

z z

p p
a a

p
p p

k k
B T exp dp ' dp

g g
−  atmospheric contribution 

           (17) 
 
For downward radiation ( )I ,μ τ ↓ , we similarly have: 

 

 ( ) ( )
⎡ ⎤χ χ

μ ↓= − ⎢
μ μ⎢ ⎥⎣ ⎦

∫ ∫
z zp p

a a
z p

0 p

k k
I ,p B T exp dp ' dp

g g
⎥      (18) 

 
 
Let us recall that we defined the transmission function as follows: 
 

z

p
a

p

k
t exp dp

g

⎡ ⎤χ
= − ⎢ ⎥

μ⎢ ⎥⎣ ⎦
∫  

 
From above, we have 
 

         (19) ( ) ( )
∞

μ ↓ = − ∫
t

z
1

I ,p B T dtp

s s

  where T = T(t) 
 
with a similar expression for the upward intensity: 
 

( ) ( ) ( )μ ↑ = − +∫
st

z
1

I ,p B T dt B T t        (20) 

where t = transmission 
 
In practice molecular absorption by atmospheric gases (H2O, CO2, O3, N2O, CO, CH4, O2, etc.) 
fluctuate rapidly with respect to frequency compared with the Planck function ( )νB ,T . 

Therefore, when we consider a spectral interval appropriate for measurement, we can take the 
frequency variation into account and we have: 
 

( ) ( )
∞

Δν ν
Δν

↓= μ ν = ν∫ ∫
t

z
1

I I ,p d B , T dt  

 

where 
zp

a

p

k dp '
t exp d

g
ν

Δν

⎧ ⎫χ⎪= − ⎨
μ⎪ ⎪⎩ ⎭

∫ ∫
⎪ ν⎬        (21) 

12.815, Atmospheric Radiation                                                                                                                  Lecture    
Dr. Robert A. McClatchey and Prof. Ronald Prinn                                                                                 Page 7 of 15  



and this frequency averaged transmission represents the object of many years of work in 
atmospheric radiative transfer by many people. We will discuss this more completely when we 
discuss the HITRAN & MODTRAN transmission and radiation models later. 
 
Case III:
 
Let us go back to Eq. 9a and consider the source function under conditions when the solar and 
diffuse radiation field is much greater than the Planck emission. The approximate separation of 
solar radiation and planetary emission will again be invoked to examine the radiative transfer 
problem in the visible portion of the spectrum where ( ) ( )ν νθ >> ν τF B ,  

 
and the scattered radiation, 
 
  ( ) (ν νθ φ τ = >> ν τI ', , B , )
 
As before, the formal solution is: 
 

( ) ( ) ( )'
0 0 0 0

0

d 'I , , , , J ', , , , e 0
τ

− τ−τ μ ττ μ μ φ φ ↑ = τ μ μ φ φ μ >μ∫  

 

( ) ( ) ( )
0

'
0 0 0 0

d 'I , , , , J ', , , , e 0
τ

− τ −τ μ

τ

ττ μ μ φ φ ↓ = − τ μ μ φ φ μ <μ∫  

           (22) 

( ) ( ) ( )0 0where J ', , , , P , , ', ' I ', , , ', ' d ' d '
4

νωτ μ μ φ φ = μ φ μ φ τ μ φ μ φ μ φ
π ∫ ∫  

       ( )0 0
0

F
exp P , , ,

4
ν νν

τ⎛ ⎞+ ω − μ φ μ φ⎜ ⎟μπ ⎝ ⎠
 

 
The solution to this problem requires knowledge of the distribution of scatterers, the optical 
properties of the scatterers and their Phase Function (the probability that a photon incident 
from a particular direction will be scattered into another specific direction). In general, we must 
also deal with the complex problem of multiple scattering. We’ll investigate the process of Mie 
Scattering and Absorption by spherical particles, having specified sizes and optical properties. 
We’ll use a computer program that provides exact solutions for Mie Scattering and Absorption. 
Then, we’ll be dealing with a computer model capable of computing the radiation field for 
multiple scattering, using a procedure known as Discrete Ordinates which divides the radiation 
field into Fourier components and integrates the set of independent equations using Gaussian 
quadrature. 
 
 
2. Radiation Intensity and Radiation Flux 
 

a. Radiation Intensity – amount of energy per unit time contained in an element of solid 
angle which flows through a cross section of unit area perpendicular to the direction of 
the beam. 
 
Let us consider that we have isotropic radiation of intensity Io falling on one face of a 
horizontal slab: 
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Solid Angle (in spherical coordinates) 
 
 

       
 
 
 

b. Radiation Flux in Vertical Direction – amount of energy per unit time crossing a unit 
surface perpendicular to the z direction. 
 

2 22 2

o
0 0 0 0

F Isin d d I sin cos d d
π ππ π

↓ = θ θ φ = θ θ θ φ∫ ∫ ∫ ∫  

 

     
2

0 0
0

2 I cos sin d I
π

= π θ θ θ = π∫  
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For Isotropic Radiation, the flux is π times the intensity of a straight beam.
 
Applications using Radiation Intensity 

1. Remote sounding 
2. Satellite measurements 
3. Target detection over horizontal/vertical paths 

 
Applications using Flux: 

1. Heating/Cooling of atmosphere 
2. Radiation effects on climate. 

 
 
3. Approximate Solution for Planetary Radiation 
 
From Eq. 12, we have: 
 

ν
ν

ν

μ = −
τ

dI
I B

d ν           (23) 

 
This can be transformed into an integral equation by integrating both sides over all angles:
 

 
π π

ν
ν ν

ν− −

μ μ φ = μ φ − π
τ∫ ∫ ∫ ∫

2 1 2 1

0 1 0 1

dI
d d I d d 4 B

d
 

 

 ν ν
ν

νμ −⎜ ⎟⎜ ⎟τ ⎝ ⎠
∫ ∫
1 1

1 1

d
2 I d 2 I d

d − −

⎛ ⎞
π μ μ = π π4 B         

0

1

1

If I I cons tan t

I d 2I

ν

νν
−

= =⎡ ⎤
⎢ ⎥
⎢ ⎥μ =⎢ ⎥⎣ ⎦
∫

 

         divergence of net     total flux     total flux in 
           upward flux            (      )4 Iνπ an LTE enclosure

           ( )d
F

d ν
ν

⎡ ⎤
π⎢ ⎥τ⎣ ⎦

         

 
leading to the radiative transfer equation in net-flux form: 
 

ν
ν

ν

= −
τ

dF1
I B

4 d ν          (24) 

Now – multiply both sides by μ and integrate overe all angles:
 
           0 

π π + π
ν

ν ν
− −

μ μ φ = μ μ φ − μ μ φ
1

d dτ∫ ∫ ∫ ∫ ∫ ∫
2 1 2 1 2 1

2

v0 0 0 1 0

dI d d I d d Bd  

 
1

22 I d
1

d
d ν −

⎡ ⎤
π μ μ =⎢ ⎥τ ⎣ ⎦
∫ Fν νπ  

            net upward flux 
    π  Kν
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dK
F

d
ν

ν
ν

=
τ

          (25) 

 
 
Now,  looks something like this Iν
 

 
 
 
In order to solve these equations, Eddington proposed a two-stream approximation: 
 
 

( )I I 0+
ν νμ ≤ 1μ ≤  

  −
ν > μ ≥ −I 0 1

 
Thus 
 

(
2 1

0 1

4 I I d d 2 I I
π

+ −
ν ν ν

−

π = μ φ π +∫ ∫ )ν

)Iν

       (26a) 

 

            (26b) (
2 1

0 1

F I d d I
π

+ −
ν ν ν

−

π = μ μ φ π +∫ ∫
 

     (
2 1

2

0 1

2K I d d I3

π

)I+ −
ν ν ν

−

π = μ μ φ π +∫ ∫ ν       (26c) 

 

 ( )+ −ν
ν ν

ν

= + −
τ

dF1 1 I I B24 d ν        (26d) 

 
 
where we have used Eq. 24. 
 

 ( )2 d
I I F

3 d
+ −
ν ν

ν

+ =
τ ν          (27) 

 
where we have used Eq. 26c. 
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Or, differentiate Eq. 26d and use Eq. 27: 
 

 ( )
2

2d F dB1 1 d
I I

4 d 2 d d
+ −ν ν
ν ν

ν νν

= + −
τ τ τ

 

 

  
2

2d F dB1 3
F

4 d 4 d
ν ν

ν
νν

= −
τ τ

 

 

  
2

2d F dB
3F 4

d d
ν

ν
νν

− = −
τ τ

ν        (28) 

   
 
This is known as Eddington’s Equation. 
 
The two required boundary conditions are usually given in the form of I- or I+. We have from Eq. 
26d. 
 

+ −ν
ν ν

ν

= + −
τ

dF1 1 1
I B

2 4 d 2 νI  

     Using 26d 

       ( )+ν
ν ν

ν

= + − −
τ

dF1 1
B I F

4 d 2 ν  

 
where we have made use of Eq. 26b. 
 

Thus: + ν
ν ν

ν

= + +
τ

dF1 1
νF4 d 2

I B  

 
     (at bottom ν ν= s sE B eg cloud-top or surface) 
 
     ( )F at top since I 0 at 0−

ν ν= = ντ =

ν

 
and I I  F− +

ν ν= −
 

 ν
ν

ν

= + −
τ

dF1
B

4 d 2 ν

1
F  (From I+ equation above) 

 
 = 0 (at top since no downward diffuse radiation) 
 
 
To provide some simple analytical solutions it is useful to consider the grey approximation 
wherein α  is replaced by  (= grey absorption coefficient). ν α
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Thus, equation of radiative transfer can be integrated over frequency since 
  d dz dν ντ = −α ⇒ τ = −α dz
 
which is now independent of ν. Using the notation ( ) ( ) d= ν∫  

 

 
dI

I J
d

μ = −
τ

 

 

 
2

2

d F dB
3F 4

dd
− = −

ττ
 

 

 ( )+
= + + =

τ s s

1 dF 1
I B F E B at bottom or F at top

4 d 2
 

 

 (−
= + − =

τ
1 dF 1

I B F 0 at
4 d 2

)top . Also note that =
π

4ST
B  from earlier lecture. 

 
where s=Stefan’s constant. 
 
Example: Suppose we have an atmosphere at rest (i.e. no dynamical or latent heat fluxes). 
Suppose also that net radiative heating is zero everywhere – that is the net upward flux Fπ  =  
constant (i.e. non-divergent). This state is called radiative equilibrium. Eddington’s equation is 
now: 
 
 

 =
τ

4 dB
F

3 d
 

 

 ( )+
= + =

1
I B F F at top

2
 

      

 ( )−
= − =

1
I B F 0 at top

2
 or 

1
B

2
= F  at top 
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       ( ) = 1
i.  e. B 0 F

2
 

 
( )

( )β τ τ

β

= τ∫ ∫
0 0

3
dB F d

4
 

 

 ( ) ( )τ − = τ
3

B B 0 F
4

 

 

 ( )τ − = τ
1 3

B F
2 4

F  

 

 ( ) ⎛ ⎞τ = τ +⎜ ⎟
⎝ ⎠

13B F 4 2
 

 
At the top of the atmosphere we need for the planetary average: 
 
net incoming solar flux = net outgoing planetary flux
 

( ) 2

2

1 A S a
F

4 a

− π
= π

π
 

 
( )1 A S

F
4

−
=

π
 

       

( ) ( )− ⎛ ⎞τ = τ +⎜ ⎟π ⎝ ⎠

1 A S 3 1
B

4 4 2
 

 

( )− ⎛ ⎞= τ⎜ ⎟π π ⎝ ⎠

4 1 A S(s)T 3 1
4 4

( )4 1 A S 3 1
T

4s 4 2

⎡ ⎤− ⎛ ⎞= τ⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

+
2

  +  

 
 
This is the simplest expression of the “greenhouse effect”. 
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Notes: 1. Sometimes 
( )1 A S

4s

−
 is written as Te

4 where Te is called the “effective temperature” 

of the planet. (Te = 254.1K for Earth). 
 
2. In radiative equilibrium, the temperature of the surface is not equal to the temperature of 
the air immediately above the surface. In particular at z=0 (or τ=τs): 
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for the surface temperature in radiative equilibrium. 
 

For the earth, let us take:     ( )s
zexp h
−τ τ  

        sE 1 s 4τ  
 A = 0.3       
 S = 1.35 x 106 erg cm-2 sec-1 h = scale ht. of principal 

atmospheric absorber 
(H2O)  2 km. 

 s = 5.67 x 10-5 erg cm-2 deg-4 sec-1

 
 
 
And we obtain: 
 
 Ts = 359.3K 
 What is temp. of atmosphere near surface? 
 What is temperature gradient of atmosphere at surface? 
 What is temperature at top of atmosphere? 
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