
Chapter 1 

Introduction 

Richard Feynman (1964) in his Lecture on Physics observed that, 

Often, people, in some unjustified fear of physics, say you can’t write an 
equation for life. Well, perhaps we can. As a matter of fact, we very 
possibly already have the equation to a sufficient approximation, when we 
write the equation for quantum mechanics: 

∂ψ 
Hψ  = − . (1.1)

i ∂t 

However, we are unable to reconstruct the field of biology from this equa
tion, and we depend on detailed observation of biological phenomena. 

Uriel Frisch (1995) in his book Turbulence points out that an analogous situation 
prevails in the study of turbulent flows. The equation, generally referred to as the 
Navier-Stokes equation, has been know since Navier (1827) and Stokes (1845), 

Du 1 
= − ∇p + ν∇2 u, (1.2)

Dt ρ0 

∇ · u = 0, (1.3) 

The Navier-Stokes equations probably contain all of turbulence. Yet it would be 
foolish to try to guess from these equations all the variety of regimes of turbulent 
flows without looking at experimental facts. The phenomena are almost as varied as 
in the realm of life. The flows shown in Fig. 1 are example of solutions of the Navier-
Stokes equations, with modifications to account for rotation and density variations. 
But nobody knows how to derive these solutions from the equations themselves. 

A good way to make contact with the world of turbulence phenomena is through 
observations of natural flows. Examples are ubiquitous in the ocean, atmosphere, 

h̄ 
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Figure 1.1: Examples of turbulent flows at the surface of the Sun, in the Earth’s 
atmosphere, in the Gulf Stream at the ocean surface, and in a volcanic eruption. 

lakes, and rivers of our Earth, in the atmospheres of other planes, in stars, galaxies, 
and space gases (neutral and ionized). A few examples are shown in Fig. 1. These 
flows are very irregular and do not display the regularity of the solutions of the Navier-
Stokes equations that you studied in introductory courses in fluid dynamics. The field 
of turbulence can be defined as the attempt to bring together our understanding of 
the laws that govern fluid dynamics (the Navier-Stokes equations) with the irregular 
nature of real flows. 

But how can we tell which natural flows are turbulent and which are not? As for the 
problem of defining life, there is no simple answer. A useful approach is to list what 
properties must be present to consider a flow turbulent. 

1.1 Properties of turbulent flows 

• Broadband spectrum in space and time 

Turbulent flows are characterized by structures on a broad range of spatial and 
temporal scales, even given smooth or periodic initial conditions and forcing. 
That is turbulent flows have a broadband spectrum both in frequency and 
wavenumber domains. 
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Figure removed due to copyright restrictions.

Citation: Van Dyke, Milton. An album of fluid motion. Stanford, CA:

Parabolic Press, 1982, p. 176. ISBN: 9780915760039.


Figure 1.2: High Re jet exiting from a nozzle. 
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Figure removed due to copyright restrictions.

Citation: Van Dyke, Milton. An album of fluid motion. Stanford,

CA: Parabolic Press, 1982, p. 176. ISBN: 9780915760039.


Figure 1.3: Uniform flow incident on a cylinder at low Re. Uniform flow incident on 
two cylinders at high Re. 

If L is the length scale of the largest motions and l is the length scale of the 
smallest motions in a flow, then a large range of spatial scales implies L � l. The  
scale l is typically the scale at which dissipation becomes important and removes 
energy from the flow. The scale L, instead, is set by the forcing mechanisms 
that set the large-scale flow. The ratio L/l is the Reynolds number Re, and  
L � l implies that the Reynolds number be large. Turbulent flows have large 
Reynolds numbers (Fig. 1.2 and 1.3). 

• Dominated by advective nonlinearity 

A field of non-interacting linear internal waves with many different frequencies 
and wavenumbers can also have a large range of length scales, but it is not 
turbulent. Why not? In a turbulent flow the different scales interact, through 
the nonlinear terms in the equations of motion. And these nonlinear interactions 
are responsible for the presence of structure on many different scales. Thus the 
broad band spectrum appears as a result of the internal dynamics. In a field of 
linear internal waves, instead, the broad band spectrum is generated by external 
controls like forcing, initial or boundary conditions (Fig. 1.4). 

• Unpredictable in space and time 

Turbulent flows are predictable for only short times and short distances. Even 
though we know the equations that govern the evolution of the fluid, we cannot 
make predictions about the details of the flow due to its sensitive dependence 
on initial and boundary conditions. This sensitive dependence is once more 
a result of the strong nonlinearity of the flow. Predictability, however, can be 
recovered in a statistical sense, as we will see in lecture 2 (Fig. 1.5). The sensitive 
dependence on initial and boundary conditions is a fundamental property of 
chaotic systems. Are thus turbulence and chaos synonyms? No. Turbulent 
motions are indeed chaotic, but chaotic motions need not be turbulent. Chaos 
may involve only a small number of degrees of freedom, i.e. it can be narrow 
band in space and/or time. There are numerous examples of chaotic systems 
characterized by temporal complexity, but spatial simplicity, like the Lorenz’s 
system. Another class of chaotic flows is represented by amplitude equations 
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Figure removed due to copyright restrictions. 

Figure 1.4: These internal wave photographs were taken by astronauts on board the 
space shuttle on Jan. 14, 1986. The picture shows the sea surface of the Eastern 
Pacific, around the Galapagos Islands, 600 miles off the coast of Ecuador. The sea 
surface coverage of a photograph is about of 75 km by 75 km. There is a clear 
difference between the wavy patterns of internal waves and the turbulent patterns of 
clouds. 
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that describe the slow time and large scale evolution of nearly monochromatic 
waves. Turbulence is different, because it is always complex both in space and 
time. 

•	 Time irreversible 

Turbulent motions are not time reversible. As time goes on, turbulent motions 
tend to forget their initial conditions and reach some equilibrated state. Turbu
lence mixes stuff up, it does not unmix it (Fig. 1.6). A challenge of this course 
will be to explain how irreversibility can arise in fluids that are governed by 
classical mechanics, i.e. Newton’s dynamics, which is time reversible. 

The classification of properties that a flow must display to be considered turbulent 
is a subject of continuous debate in the scientific community. Many authors make 
narrower definitions of turbulence, limiting the scope to 

•	 flows exhibiting explosive three dimensional vortex stretching 

•	 flows obeying Kolmogorov’s cascade law (to be described later) 

•	 flows with a finite cascade of energy toward smaller scales. 

These definitions are arbitrarily exclusive, since there are many geophysical flows 
which share the fundamental properties of broadband spectrum, advective nonlinear
ity, unpredictability, and time irreversibility, yet, due to the effects of rotation and 
stratification, are not fully three dimensional, do not satisfy Kolmogorov’s law, and 
have no energy transfer toward smaller scales. 

The properties of turbulent flows are better described in terms of dualities between 
regular and turbulent flows. Here we follow a list proposed by Jim McWilliams, a 
very influential oceanographer from UCLA. 

•	 Deterministic vs random. 
The equation of motions are deterministic, but their solutions have many at
tributes of random processes. 

•	 Orderly versus chaotic. 
Many of the spatial and temporal patterns are orderly, but the overall behavior 
is clearly chaotic. 

•	 Time reversible versus time irreversible. 
If we neglect ν and κ (because Re is large), then the equations are time re
versible, i.e. any solutions for (t, u, p, b) is also a solution for (−t, −u, p, b), but 
the outcome is evidently irreversible, even after a short period of time of the 
order of the eddy turnover time, L/U . The breaking of symmetries is a salient 
feature of turbulent motions. 
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Figure removed due to copyright restrictions.

Citation: Uriel, Frisch. Turbulence. New York, NY: Cambridge University Press, 1995.

ISBN: 9780521451031 (hardback), 9780521457132 (pbk).


Figure 1.5: Two sections of one second of a signal recorded by a hot-wire (sampled 
at 5 kHz) in a wind tunnel. The two sections differ in some small details of the flow 
upstream, i.e. initial conditions. The statistical properties of the two signals are 
similar, but the details of the flow are completely different. 
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Courtesy of American Meteorological Society. Used with permission. 

Figure 1.6: Evolution of a simulated tracer deployed in the Arctic vortex in April 
1993. The circles on plots for 30 April, 1, 6, and 7 May are the location where 
tracer values representative of vortex air where measured aboard the ER-2 aircraft. 
There is good agreement between the location of the filaments of ex-vortex air in the 
simulation and the locations where vortex air was observed (See Waugh et al., 1997 
for details). The tracer tends to spread out from the location where it was released. 

•	 Materially confined versus dispersive. 
Parcels initially close to each other, tend to spread in time. Turbulence mixes 
tracers, it doesn’t unmix them. 

•	 Conservative versus non-conservative. 
If we neglect ν and κ, then the equations are conservative (of energy, tracer 
variance, etc.), but the outcome of turbulence is dissipative (the second law of 
thermodynamics applies). If dissipation continues to occur in a regime with only 
large-scale forcing or initial conditions – as is true for the Earth’s climate system 
– then there must be a continuing transfer of fluid properties from larger spatial 
scales to smaller ones, and eventually small enough so that diffusive terms can 
be comparable to the advective ones. This process is called the forward (i.e. 
toward smaller scales) turbulent cascade. 

•	 Quasi-periodic and spatially smooth versus broad-band. 
Turbulence develops a broad spectrum in (ω, k) space even when given smooth 
or periodic initial conditions or forcing. The spectra of atmospheric and oceanic 
flows can show some indication of preferred time and spatial scales, but have 
broad-band shape (examples: atmospheric near-surface wind frequency spec
trum and oceanic internal wave frequency spectrum). Spectra often have power-
law forms over wide frequency and wavenumber ranges (e.g. the famous k−5/3 

form of the Kolmogorov cascade in three-dimensional turbulence and the ω−5 
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frequency spectrum for surface waves in the open ocean). 

•	 Predictable versus unpredictable. A turbulent flow is predictable for only a 
limited period of time, usually of the order of several eddy turnover times, 
L/U . On the other hand statistical properties of the flow can be quite stable, 
hence in principle predictable. This situation is reminiscent of thermodynamics: 
if we put two bodies of different temperatures in contact we can predict their 
final temperature, but not the trajectory of every single molecule. 

•	 Smooth versus sensitive dependence. 
The evolution of the partial differential equations of fluid dynamics is ill-posed 
in the classical sense, in that small changes in any aspect of the problem for
mulation (initial conditions, boundary conditions, model parameters, etc.) lead  
to large macroscopic changes in the solution after a finite time, the so-called 
predictability time. 

•	 Statistically regular versus statistically irregular. 
Some statistical measures of turbulence have nearly Gaussian probability distri
butions, but the overall structure of turbulent fields is highly non-Gaussian with 
rare and intense events relatively more probable (i.e. turbulence has bursts). 

•	 Globally ordered versus locally ordered. 
Global ordering is rare for large Re, unless it is established through ordered 
forcing or domain geometry. But local ordering, particularly of the vorticity 
field, is nearly universal. This local ordering is the coherent structures. 

•	 Persistent versus transient, evanescent, chaotically recurrent patterns. 
The evident ordering in the flow patterns is usually transient. Coherent struc
tures appear and disappear in an unpredictable sequence. 

In real turbulent flows neither pair of the antonyms is entirely false. However much 
of our understanding of turbulence lies in comprehending how flows transitions from 
one member of the antonym to the other. 

1.2 Governing equations 

We will take a simplified form of the governing equations for use in this course, 
viz., the Boussinesq equations. The ocean and the atmosphere have a more complex 
thermodynamics than these equations do, but this is largely extraneous to the fun
damental behaviors of turbulence and thus will be ignored. The three dimensional 
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︷︷ ︸ ︸ 

Boussinesq system is,

  

∂u 1 
+ (u · ∇)u = − ∇p + ν∇2 u +  bẑ − f ẑ × u  , (1.4)

∂t ︸ ︸ ρ0 
︸ ︷︷ ︸ ︸︷︷︸ ︷︷ 

inertia friction  buoyancy Coriolis   

 ∂b   + (u · ∇)b = κ∇2b  , (1.5)
∂t ︸ ︷︷ ︸ ︸ ︷︷ ︸ 

advection diffusion    

 ∂c 2   + (u · ∇)c = κ∇ c  , (1.6)
∂t ︸ ︷︷ ︸ ︸ ︷︷ ︸ 

advection diffusion  

∇ · u = 0, (1.7) 

where p is the pressure, f is the Coriolis frequency associated with planetary rotation, 
and the vertical versor ẑ is assumed to be parallel to both gravity and the axis of 
rotation. The buoyancy b is defined in terms of density as ρ = ρ0(1 − g−1b). Notice 
that b has the dimension of an acceleration. These equations must be complemented 
by forcing, boundary and initial conditions to obtain a well posed problem. We can 
also consider the evolution of a passive tracer c: it satisfies the same equation as b, 
but it has no influence on the evolution of u. [The Boussinesq equations follow from 
the full Navier-Stokes equations if one neglects all density fluctuations except those 
due to heat, salt, and humidity]. 

These equations have conservative integral invariants for energy, and all powers and 
other functionals of buoyancy, in the absence of friction and diffusion. For non-
conservative dynamics, the energy and scalar variance satisfy the equations, 

∂E ∂B 
= −ε, = −εB , (1.8)

∂t ∂t 

where, 
∫ ∫ ∫ [ ]

1 
[E, B, ε, εB] =  dx u · u − bz, b2, ν  ∇u : ∇u + κz∇2b, κ ∇b · ∇b , (1.9)

2 

In deriving (1.8), it is assumed that there are no boundary fluxes of energy or scalar 
variance. These integrals measures of the flow can only decrease with time through 
the action of molecular viscosity and diffusivity. The only exception is the compressive 
work, κz∇2b, which can act as a source of mechanical energy. We will return to this 
issue  in the  chapter on convection.  

Every problem we will consider lies within the set of solutions of the PDE system in 
(1.4) through (1.7). No general solution is known, nor is any in prospect, because 
we do not know a mathematical methodology that seems powerful enough. However 
computers are giving us access to progressively better particular solutions, i.e. with 
progressively larger Re. 
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The brackets in (1.4) through (1.5) contain the effects of buoyancy and rotation, and 
these terms are ignored in the classical literature on turbulence, which deals with 
uniform density fluids in inertial reference frames. In these simpler circumstances, 
the Boussinesq system is called the incompressible Navier-Stokes equations, or with 
the further elimination of the frictional term, the incompressible Euler equations. 

Because of the lack of general solutions to the Boussinesq equations, it is useful to 
identify which terms might be neglected in specific situations in order to simplify the 
problem and make analytical progress. The relative size of the various terms that 
appear in (1.4) through (1.7) can be estimated in terms of nondimensional numbers. 
The ones that will be most useful in this class are as follows. 

•	 Inertia and friction


The Reynolds number is defined as


UL  
Re ≡	 (1.10)

ν 

Here U and L are characteristic velocity and length scales of the flow and ν is 
the kinematic viscosity of the fluid. The Reynolds number measures the ratio 
of inertia and friction, 

|(u · ∇)u| U/L U 
|ν∇2u| ≈

νU/L2 
= Re.	 (1.11) 

Equivalently, the Reynolds number is the ratio of the characteristic scale of the 
flow L and the scale at which momentum is dissipated l = ν/U . In turbulent 
flows Re � 1, advective dominance ⇒ nonlinear dynamics ⇒ chaotic evolution 
and broadband spectrum. 

The focus of this course is on turbulence in the Earth’s ocean and atmosphere. 
Typical values for ν near the Earth’s surface are 1.5 × 10−5 m2 s−1 for air 
and 1.0 × 10−6 m2 s−1 for water. These values are small enough, given typical 
velocities U , that  Re � 1 on all spatial scales L from the finescale of about 
1 m to the planetary scale of about 104 km. For example, U = 1 m s−1 and 
L = 103 m give  Re = 109 − 1010 respectively for the atmosphere and the ocean. 

For Re � 1, the frictional term is small, at least at the scale L. Paradoxically, 
however, the dissipation terms in (1.8) control the energetics of the system. 
Thus, there must be a profound difference in solutions between the asymptotic 
tendency as Re → ∞, and the Euler limit, Re = ∞ or ν = 0. The difference 
is that as long as Re ≤ ∞, there are small scales at which friction becomes 
important and Re is small. 

It is instructive to check how Re controls the behavior of solutions in a real flow. 
Let us consider a fluid of uniform density in an inertial reference system, i.e. let 
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Figure 1.7: Uniform flow with velocity U , incident on a cylinder of diameter L. 

us neglect rotation and variations in buoyancy in (1.4) and (1.5) (b = f = 0).  A  
classical example is a uniform flow incident on a cylinder (figure 1.7). Figures 
1.8 through 1.10 show how the flow past the cylinder changes for different 
Reynolds numbers. And the movie by Wim de Leeuw at Re = 22000 gives you 
the feeling of how complex is the flow that develops behind the obstacle (run 
dns-midi.mpg). 

• Advection and diffusion 
UL  

Pe  ≡ (1.12)
κ 

The Peclet number is the direct analog of Re for a conserved tracer c with a 
diffusivity κ and measures the relative importance of advection and diffusion. 
At large Pe, the tracer evolution is dominated by advection. Once more, the 
limit Pe  → ∞ is very different from Pe  = ∞, because dissipation, no matter 
how small, eventually is responsible for removing structure from the tracer field 
(Fig. 1.11). 

• Friction and diffusion 
ν 

Pr  ≡ (1.13)
κ 

The frictional length scale is lν = ν/U and the diffusive length scale lκ = κ/U . 
The Prandtl number is defined as the ratio of these two length scales, Pr  ≡ 
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Figure removed due to copyright restrictions.
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Figure 1.8: Flow past a cylinder at R = 0.16 and R = 1.54 (Van Dyke 1982). 

lν /lκ. The Prandtl number is a property of the fluid, not of the particular flow. 
Hence there is a restriction on the transfer of information from experiments 
with one fluid to those with another. For Pr  >  1 the scales at which friction 
becomes important are larger than those for diffusion and, at some small scale, 
we expect to find smooth velocity fields together with convoluted tracer fields. 
For Pr  <  1 we expect the opposite. The Prandtl numbers for air and water are 
0.7 and  12.2 respectively. The paper by Paparella and Young (Journal of Fluid 
Mechanics, 2002) shows examples of flows with low and high Pr. 

• Inertia and Coriolis 
U 

Ro ≡ (1.14)
fL  

The Rossby number Ro measures the relative importance of the real inertial 
forces and the fictitious Coriolis force, that appear because of the rotating ref
erence system. Thus Ro measures the importance of rotation in the problem at 
hand. Ro � 1 characterizes essentially non-rotating turbulence, while Ro ≤ 1 
flows are strongly affected by rotation (Fig. 1.12). 

• Buoyancy and diffusion 
∆bL3 

Ra ≡ (1.15)
κν 

In convective problems, motions are generated by imposing an unstable den
sity stratification on the fluid (∂b/∂z < 0). In these problems, it is useful to 
characterize turbulence in terms of the Rayleigh number, i.e. the ratio of 
the diffusive timescale tκ = L2/κ and the buoyancy timescale tb = (L/∆b)1/2 . 
The buoyancy scale ∆b is the buoyancy difference maintained across the layer 
depth L through external forcing. If the forcing is imposed by maintaining a 
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Figure 1.9: Flow past a cylinder at R = 9.6, R = 13.1, and R = 26 (Van Dyke 1982) 
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Figure removed due to copyright restrictions.

Citation: Van Dyke, Milton. An album of fluid motion. Stanford,

CA: Parabolic Press, 1982, p. 176. ISBN: 9780915760039.


Figure 1.10: Wake behind two cylinders at R = 1800, and homogeneous turbulence 
behind a grid at R = 1500 (Van Dyke 1982). 

temperature difference ∆T , then one has ∆b = gα∆T , where  α is the coefficient 
of thermal expansion of the fluid, and g the acceleration of gravity. Convec
tion starts if tκ � tb, i.e. if RaP r � 1, when diffusion is too slow to change 
substantially the buoyancy of water/air parcels as they rise (Fig. 1.13). 

• Buoyancy and inertia 
∂b/∂z 

Ri ≡ (1.16)|∂u/∂z|2 

In the presence of stable buoyancy stratification, vertical motions tend to be 
suppressed, but turbulence can still emerge, if there is enough energy in the 
horizontal velocity field. A useful parameter to characterize the flow in these 
problems is the ratio of the buoyancy timescale tb = (L/∆b)1/2 = 1/(∂b/∂z)1/2 

and the inertial timescale due to horizontal shears in the flow ti = L/U = 
1/(∂u/∂z). This ratio is called the gradient Richardson number Ri. If  Ri 	 
1, buoyancy can be neglected in the momentum equations, and it becomes a 
passive scalar with no feedbacks on the dynamics (Fig. 1.14). 

A final remark about the only term that never appeared explicitly in the nondimen
sional numbers presented: the pressure force. Pressure can be formally eliminated 
from the equations. This is a consequence of the Boussinesq approximation. We 
simply need to take the divergence of the momentum equation in (1.4) and note that 
∇ · ut = 0 because of incompressibility. This yields the relation, 

∇2 p = ρ0∇ ·  −(u · ∇)u + ν∇2 u + bẑ − f ẑ × u . (1.17) 
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Figure 1.11: Contours of two tracers advected by a two dimensional flow field. The 
two tracers have Pe  = 100 (upper panel) and Pe  = 10  (lower  panel).  
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Figure removed due to copyright restrictions. 
Citation: http://www.the-planet-jupiter.com. 

Figure 1.12: Rotational effects produce the well-known jets in the atmosphere of 
Jupiter. The Ro can be estimated to be of order 0.1 using  U = 300 m/s, f = 2.5 ·10−4 

s−1, and  L = 10, 000km). 

Figure removed due to copyright restrictions.

Citation: Vincent, Alain, and David A. Yuen, "Statistical Physics, Plasmas, Fluids, and
Related Interdisciplinary Topics."  Physical review E,  2000.


Figure 1.13: Convection in air at a Ra = 1012 and Ra = 1014 (Alain Vincent and 
David A. Yuen, Phys. Review E, 2000). 

19 

http://www.the-planet-jupiter.com


Figure removed due to copyright restrictions. 

Figure 1.14: Kelvin Helmholtz instability in the atmosphere. Picture taken near 
Washington, D.C.. Darker areas are clouds. 

Since there are no time derivatives in (1.17), pressure is a purely diagnostic field, 
which is wholly slaved to u. It can be calculated from (1.17) and then substituted 
for the pressure gradient force in the momentum equations. Its role is to maintain 
incompressibility under the action of all other forces. It would be redundant to in
troduce nondimensional parameters involving pressure, because any such parameters 
can be expressed as combinations of the parameters already discussed. 
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