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Chapter 15

Transformed Eulerian Mean in 3D

In this lecture we show that the Transformed Eulerian Mean theory can be extended
to three dimensions. We will restrict the analysis to the quasi-geostrophic equations,
but progress can be made for primitive equations as well. Most of the work reported
here can be found in Plumb (JAS, 1990) and Wardle and Marshall (JPO, 2000).

Consider the average ψ̄(x, y, z, t) of a 3D, QG system. The average can be a temporal
average, a low-pass spatial filter or a temporal filter. The averaged QG equations at
O(1) are,

f ūz = ẑ ×∇b̄, ∇ · ū = 0, (15.1)

(15.2)

where u is the horizontal geostrophic velocity. At O(Ro),

ūt + (ū ·∇) ū + f0ẑ × ūa = G − (u′ ·∇) u′, (15.3)

b̄t + (ū ·∇) b̄ + w̄aN
2 = B −∇ · u′b′, (15.4)

∇ · ūa = 0. (15.5)

15.1 The residual circulation

As for the zonal mean case, we begin by defining the residual circulation with the aim
of removing any skew buoyancy flux from the buoyancy budget. Since N2 does not
depend on x and y, the whole flux is skew and can be eliminated with the following
definition of residual circulation,

ū† = ūa +∇×Ψ, (15.6)
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where

Ψ =
ẑ × u′b′

N2
. (15.7)

This definition leaves the buoyancy budget in the simple form,

b̄t + (ū ·∇) b̄ + w̄†N2 = B̄. (15.8)

15.2 Transformed momentum budget

The momentum budget must now be written replacing the ageostrophic velocity with
the residual velocity,

ūt + (ū ·∇) ū + f0ẑ × ū† = G − (u′ ·∇) u′ + f ẑ × (∇×Ψ) (15.9)

= G − (u′ ·∇) u′ + f ẑ × ∂

∂z

(
u′b′

N2

)

− f∇Φ

= G − ∂jMji

where the generalized EP fluxes are given by,

M =




Mxx Mxy

Myx Myy

Mzx Mzy



 =




u′2 + fΦ u′v′

u′v′ v′2 + fΦ
−fN−2v′b′ fN−2u′b′



 . (15.10)

The function Φ is yet to be determined (it is arbitrary because of a gauge invariance
in the definition of Ψ).

The QGPV flux in 3D is,

u′iq′ = u′i

[

v′x − u′y + f
∂

∂z

(
b′

N2

)]

= ∂jQji (15.11)

where,

Q =




Qxx Qxy

Qyx Qyy

Qzx Qzy



 =




u′v′ v′2 − ε

ε− u′2 −u′v′

fN−2u′b′ fN−2v′b′



 . (15.12)

We introduced the energy density,

ε =
1

2

(
u′2 + v′2 + N−2b′2

)
= εK + εP (15.13)

given by the sum of the kinetic and potential energy densities.
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By choosing,

Φ =
1

f

(
ε− u′2 − v′2

)
=

1

f
(εP − εK), (15.14)

we have that ∂jMji = ẑ × ∂jQji = ẑ ×u′q′. And the transformed equations become,

ūt + (ū ·∇) ū + f0ẑ × ū† = G − ẑ × u′q′ (15.15)

b̄t + (ū ·∇) b̄ + w̄†N2 = B̄, (15.16)

∇ · u† = 0. (15.17)

This system appears to be analogous to the TEM zonal mean problem: there are no
explicit eddy terms in the buoyancy budget, and the eddies appear in the momentum
budget in the form of a QGPV flux. To be exact as a force per until mass equal in
magnitude, and normal, to the QGPV flux.

15.3 Transformed QGPV budget

The transformed QGPV budget is straightforward, because QGPV is advected only by
the horizontal geostrophic flow and not by the ageostrophic velocities (which change
upon introduction of the residual velocity),

q̄t + ū ·∇q̄ = −∇ · u′q′ + ẑ ·∇× G + f
∂

∂z

( B
N2

)
. (15.18)

Note that the QGPV budget is only affected by the divergent part of the QGPV flux,
while the full QGPV flux appears in the residual momentum budget. This is puzzling,
because we know that the mean geostrophic circulation can be reconstructed from
knowledge of the mean potential vorticity, and hence form a knowledge of the QGPV
flux divergence alone. Following Plumb (JAs, 1986) we can show that it is indeed
only the divergent part of the QGPV flux that appears in the momentum equation.
Let’s look at the consequence of subtracting a purely rotational component to the
QGPV flux,

(u′q′)D = u′q′ −∇× ẑχ. (15.19)

The forcing of the momentum equation becomes,

−ẑ × u′q′ = −ẑ × (u′q′)D +∇χ. (15.20)

the term ∇χ can then be absorbed into a redefinition of the ageostrophic circulation
defining,

Φ =
1

f
(εP − εK + χ). (15.21)

Using this technique, we can remove any rotational component of the QGPV flux
from the momentum equation.
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In conclusion, if we wish to parameterize the eddy forcing, it is only the divergence of
the QGPV flux that we need to parameterize in order to calculate the response of the
mean geostrophic flow.  Notice, however, that a parameterization of the divergent
QGPV eddy flux might be elusive, because the QGPV variance budget in 3D is not as
useful as in the zonal problem.  ∇


