Particle Dispersion

Random Flight - Lagrangian dispersion

As an example, we examine the random flight model, which assumes that the accelerations have a stochastic component and use Newton's equations

$$
\begin{aligned}
d \mathbf{X} & =\mathbf{V} d t \\
d \mathbf{V} & =\mathbf{A} d t+\beta d \mathbf{R}
\end{aligned}
$$

where \mathbf{A} is the acceleration produced by deterministic (or large-scale) forces. We include random accelerations with the random increment $d \mathbf{R}$ satisfying $\left\langle d R_{i} d R_{j}\right\rangle=\delta_{i j} d t$.

As examples, consider a drag law for the acceleration

$$
\mathbf{A}=-r(\mathbf{V}-\mathbf{u})
$$

with \mathbf{u} being the water velocity. The dispersion is determined by β and r; from the equations, we can show that

$$
\begin{aligned}
\left\langle V_{i}\right\rangle & \rightarrow u_{i} \\
\left\langle\left(V_{i}-u_{i}\right)\left(V_{j}-u_{j}\right)\right\rangle & \rightarrow \frac{\beta^{2}}{2 r} \delta_{i j} \\
\left\langle X_{i}(t) X_{j}(t)\right\rangle & \rightarrow\left\langle X_{i}(0) X_{j}(0)\right\rangle+\frac{\beta^{2}}{r^{2}} \delta_{i j} t
\end{aligned}
$$

The latter corresponds to a diffusivity of $\kappa=\beta^{2} / 2 r^{2}$.

- Area grows like $4 \kappa t$ ($6 \kappa t$ in 3-D)
- Velocity variance is $r \kappa$

[^0]
Taylor dispersion

In 1922, Taylor described the dispersion under the assumption that the Lagrangian velocity had a known covariance structure. He considered just

$$
\frac{\partial}{\partial t} \mathbf{X}=\mathbf{V}(t)
$$

We find that

$$
\frac{\partial}{\partial t} X_{i} X_{j}=V_{i} X_{j}+X_{i} V_{j}
$$

and, in the ensemble average,

$$
\frac{\partial}{\partial t}\left\langle X_{i} X_{j}\right\rangle=\left\langle V_{i} X_{j}\right\rangle+\left\langle X_{i} V_{j}\right\rangle
$$

If we substitute

$$
\mathbf{X}=\mathbf{X}_{0}+\int_{0}^{t} \mathbf{V}\left(t^{\prime}\right) d t^{\prime}
$$

and look at the case where $\langle\mathbf{V}\rangle=0$ and the flow is stationary, we have

$$
\frac{\partial}{\partial t}\left\langle X_{i} X_{j}\right\rangle=\int_{0}^{t} d t^{\prime} R_{i j}^{L}\left(t^{\prime}\right)+R_{j i}^{L}\left(t^{\prime}\right)
$$

where $R_{i j}^{L}$ is the covariance of the Lagrangian velocities

$$
R_{i j}^{L}(t)=\left\langle V_{i}\left(t_{0}+t\right) V_{j}\left(t_{0}\right)\right\rangle
$$

For isotropic motions $R_{i j}^{L}(t)=U^{2} R^{L}(t) \delta_{i j}$ with $R^{L}(t)$ being the autocorrelation function; the change in x-variance is given by

$$
\frac{\partial}{\partial t}\left\langle X^{2}\right\rangle=2 U^{2} \int_{0}^{t} R^{L}(t)
$$

From this formula, we see that

- For short times,

$$
\left\langle X^{2}\right\rangle=U^{2} t^{2}
$$

- For long times, if the integral $T_{i n t}=\int_{0}^{\infty} R^{L}(t) d t$ is finite and non-zero,

$$
\left\langle X^{2}\right\rangle=2 U^{2} T_{i n t} t
$$

Relation to diffusivity
Consider the diffusion of a passive scalar

$$
\frac{\partial}{\partial t} C=-\nabla \cdot[\mathbf{u}-\kappa \nabla] C
$$

and define moments of the distribution

$$
\left\langle x^{n}\right\rangle=\frac{\int x^{n} C}{\int C}
$$

Integrating the diffusion equation gives conservation of the total scalar, under the assumption that the initial distribution is compact and the values decay rapidly at infinity

$$
\frac{\partial}{\partial t} \int C=\oint \hat{\mathbf{n}} \cdot[\kappa \nabla C-\mathbf{u} C]=0
$$

The first moment gives
$\frac{\partial}{\partial t} \int x C=\int \nabla \cdot\left[x(\kappa \nabla C-\mathbf{u} C]+\int u C-\kappa \frac{\partial}{\partial x} C=\int u C-\nabla \cdot \kappa C \hat{\mathbf{x}}+\frac{\partial \kappa}{\partial x} C=\int\left(u+\frac{\partial \kappa}{\partial x}\right) C\right.$
In the absence of flow and with a constant $\kappa, \frac{\partial}{\partial t}\langle\mathbf{x}\rangle=0$. Otherwise, the center of mass migrates according to a weighted version of $\mathbf{u}+\nabla \kappa$: it moves with the flow and upgradient in diffusivity.

The second moment

$$
\frac{\partial}{\partial t}\left\langle x^{2}\right\rangle=2\langle x u\rangle+2\left\langle\frac{\partial}{\partial x}(x \kappa)\right\rangle
$$

implies that

$$
\frac{\partial}{\partial t}\left[\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right]=2\left[\langle x u\rangle-\langle x\rangle\langle u\rangle+\left\langle x \frac{\partial \kappa}{\partial x}\right\rangle-\langle x\rangle\left\langle\frac{\partial \kappa}{\partial x}\right\rangle\right]+2\langle\kappa\rangle
$$

For uniform flow and constant diffusivity, the blob spreads in x at a rate 2κ. Thus we can identify the effective diffusivity

$$
\kappa=U^{2} T_{i n t}
$$

Strain in the flow and curvature in κ will alter the rate of spread.

Small amplitude motions

If we assume that the scale of a typical particle excursion over time $T_{i n t}$ is small compared to the scale over which the flow varies, we can relate the Lagrangian and Eulerian statistics. The displacement $\xi_{i}=X_{i}(t)-X_{i}(0)$ satisfies

$$
\frac{\partial}{\partial t} \xi_{i}=u_{i}(\mathbf{x}+\boldsymbol{\xi}, t) \simeq u_{i}(\mathbf{x}, t)+\xi_{j} \frac{\partial}{\partial x_{j}} u_{i}(\mathbf{x}, t)+\ldots
$$

and we can substitute the lowest order solution

$$
\xi_{i}(t)=\int_{0}^{t} d t^{\prime} u_{i}\left(\mathbf{x}, t^{\prime}\right)
$$

into the second term above to write

$$
\frac{\partial}{\partial t} \xi_{i}=u_{i}(\mathbf{x}, t)+\frac{\partial}{\partial x_{j}} \int_{0}^{t} u_{j}\left(\mathbf{x}, t^{\prime}\right) u_{i}(\mathbf{x}, t)
$$

and average, recognizing that the mean Lagrangian velocity is just $\left\langle\frac{\partial}{\partial t} \xi_{i}\right\rangle$:

$$
\left\langle u_{i}^{L}\right\rangle=\left\langle u_{i}\right\rangle+\frac{\partial}{\partial x_{j}} \int_{0}^{t}\left\langle u_{i}(\mathbf{x}, t) u_{j}\left(\mathbf{x}, t^{\prime}\right)\right\rangle
$$

For simplicity, we assume that the turbulent velocities are large compared to the mean; then this becomes

$$
\left\langle u_{i}^{L}\right\rangle=\left\langle u_{i}\right\rangle+\frac{\partial}{\partial x_{j}} \int_{0}^{t} R_{i j}\left(\mathbf{x}, t-t^{\prime}\right)=\left\langle u_{i}\right\rangle+\frac{\partial}{\partial x_{j}} \int_{0}^{t} d \tau R_{i j}(\mathbf{x}, \tau)
$$

Let us assume that the integrals with respect to τ exist and split the covariance into its symmetric and antisymmetric parts

$$
\left\langle u_{i}^{L}\right\rangle=\left\langle u_{i}\right\rangle+\frac{\partial}{\partial x_{j}} D_{i j}^{s}(\mathbf{x})+\frac{\partial}{\partial x_{j}} D_{i j}^{a}
$$

with

$$
K_{i j} \equiv D_{i j}^{s}=\frac{1}{2} \int_{0}^{\infty} R_{i j}(\mathbf{x}, \tau)+R_{j i}(\mathbf{x}, \tau) \quad, \quad D_{i j}^{a}=\frac{1}{2} \int_{0}^{\infty} R_{i j}(\mathbf{x}, \tau)-R_{j i}(\mathbf{x}, \tau)
$$

We can write an arbitrary antisymmetric tensor in terms of the unit antisymmetric tensor

$$
D_{i j}^{a}=-\epsilon_{i j k} \Psi_{k}
$$

so that the contribution to the Lagrangian velocity is

$$
u_{i}^{S}=-\epsilon_{i j k} \frac{\partial}{\partial x_{j}} \Psi_{k} \quad, \quad \mathbf{u}^{S}=-\nabla \times \Psi
$$

Note that the antisymmetric part of the contribution to the Lagrangian velocity is nondivergent:

$$
\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} D_{i j}^{a}(\mathbf{x})=\nabla \cdot \mathbf{u}^{S}=0
$$

Thus the Lagrangian mean velocity has contributions from the mean Eulerian flow, from the Stokes' drift, and a term which tends to move into regions of higher diffusivity

$$
\left\langle u_{i}^{L}\right\rangle=\left\langle u_{i}\right\rangle+u_{i}^{S}+\frac{\partial}{\partial x_{j}} K_{i j}(\mathbf{x})
$$

We will discuss the meanings of these terms in more detail next.

Random Rossby Waves

Consider a randomly-forced Rossby wave in a channel:

$$
\frac{\partial}{\partial t} \nabla^{2} \psi+J\left(\psi, \nabla^{2} \psi+y\right)=\frac{U_{0}}{\ell} \gamma \operatorname{Re}\left[r(t) e^{\imath k x}\right] \sin (\ell y)-\gamma \nabla^{2} \psi
$$

where r is randomly distributed on a disk of radius r_{0}. This gives a streamfunction

$$
\psi=\frac{U_{0}}{\ell} \operatorname{Re}\left[a(t) e^{\imath k x}\right] \sin (\ell y)
$$

with

$$
\frac{d}{d t} a+(\gamma+\imath \omega) a=\frac{\omega \gamma}{\beta k} r
$$

and $\omega=-\beta k /\left(k^{2}+\ell^{2}\right)$.

$$
a=\frac{\gamma}{2} \int_{-\infty}^{t} d \tau e^{-\left(\gamma-\frac{1}{2} \imath\right) \tau} r(t-\tau)
$$

Stokes' drift

Consider first the steady wave case.

$$
\psi=\frac{\epsilon}{\pi} \sin (\pi[x-t]) \sin (\pi y)
$$

We look at the particle trajectories by solving the Lagrangian equations as above

$$
\frac{\partial}{\partial t} \boldsymbol{\xi}=\mathbf{u}(\mathbf{x}+\boldsymbol{\xi}, t)
$$

For small ϵ (which is the ratio of the flow speed to the phase speed, we can find an approximate solution (as before) by iterating

$$
\begin{aligned}
\frac{\partial}{\partial t} \xi_{i} & \simeq u_{i}\left(\mathbf{x}, t^{\prime}\right)+\xi_{i} \frac{\partial}{\partial x_{j}} u_{i}(\mathbf{x}, t)+\ldots \\
& \simeq u_{i}(\mathbf{x}, t)+\frac{\partial}{\partial x_{j}} \int_{0}^{t} u_{j}\left(\mathbf{x}, t^{\prime}\right) u_{i}(\mathbf{x}, t) d t^{\prime}
\end{aligned}
$$

The mean Lagrangian drift is therefore

$$
\overline{\frac{\partial}{\partial t} \xi_{i}}=\frac{\partial}{\partial x_{j}} \int_{0}^{t} R_{i j}(\mathbf{x}, \tau) d \tau
$$

Treating the mean as a phase average gives

$$
R_{i j}(\tau)=\frac{\epsilon^{2}}{2}\left(\begin{array}{cc}
\cos \pi \tau \cos ^{2} \pi y & \sin \pi \tau \sin \pi y \cos \pi y \\
-\sin \pi \tau \sin \pi y \cos \pi y & \cos \pi \tau \sin ^{2} \pi y
\end{array}\right)
$$

the integral gives

$$
D_{i j}(t)=\int_{0}^{t} R_{i j}(\tau) d \tau=\frac{\epsilon^{2}}{2 \pi}\left(\begin{array}{cc}
\sin \pi t \cos ^{2} \pi y & (1-\cos \pi t) \sin \pi y \cos \pi y \\
-(1-\cos \pi t) \sin \pi y \cos \pi y & \sin \pi \tau \sin ^{2} \pi y
\end{array}\right)
$$

so that the drift is

$$
\begin{gathered}
u_{L}=\overline{\frac{\partial}{\partial t} \xi_{1}}=\frac{\epsilon^{2}}{2} \cos (2 \pi y)[1-\cos (\pi t)] \\
v_{L}=\overline{\frac{\partial}{\partial t} \xi_{2}}=\frac{\epsilon^{2}}{2} \sin (2 \pi y) \sin \pi t
\end{gathered}
$$

Note that there is a time-averaged drift

$$
\overline{u_{L}}=\frac{\epsilon^{2}}{2} \cos (2 \pi y)
$$

prograde on the walls and retrograde in the center.

Note that we can split $D_{i j}$ as usual:

$$
\begin{aligned}
u_{i}^{L} & =\frac{\partial}{\partial x_{j}} K_{i j}+\frac{\partial}{\partial x_{j}} D_{i j}^{a} \\
& =\frac{\partial}{\partial x_{j}} K_{i j}-\frac{\partial}{\partial x_{j}} \epsilon_{i j k} \Psi_{k} \\
& =\frac{\partial}{\partial x_{j}} K_{i j}+u_{i}^{S}
\end{aligned}
$$

with the first term giving the up-diffusive-gradient transport associated with the symmetric part of $\int R_{i j}$ and the second, nondivergent part, arising from the antisymmetric term, gives the Stokes drift. For the primary wave,

$$
K_{i j}=\frac{\epsilon^{2}}{2 \pi}\left(\begin{array}{cc}
\sin \pi t \cos ^{2} \pi y & 0 \\
0 & \sin \pi t \sin ^{2} \pi y
\end{array}\right)
$$

and has no time average, while

$$
\Psi_{3}=-\frac{\epsilon^{2}}{4 \pi}(1-\cos \pi t) \sin 2 \pi y
$$

produces the nondivergent Stokes drift (and does have a mean). Demos, Page 7: drift <amp=0.2> <amp=0.2 comoving> <amp=1.0> <amp=1.0 comoving> <stokes drift> <mean>

Finite amplitude
In the frame of reference of the wave $\left(\mathbf{X}^{\prime}=\mathbf{X}-\mathbf{c} t\right)$

$$
\frac{\partial}{\partial t} \mathbf{X}^{\prime}=\mathbf{u}\left(\mathbf{X}^{\prime}\right)-\mathbf{c}=\hat{\mathbf{z}} \times \nabla(\psi+c y)
$$

Thus particles simply move along the streamlines. At some Lagrangian period T_{L}, the particle will have moved one period to the left so that

$$
X^{\prime}\left(T_{L}\right)=X(0)-\lambda=X\left(T_{L}\right)-c T_{L} \quad \Rightarrow \quad u_{L}=\frac{X\left(T_{L}\right)-X(0)}{T_{L}}=c-\frac{\lambda}{T_{L}}=c\left(1-\frac{T_{E}}{T_{L}}\right)
$$

Stokes drifts occur when the Lagrangian period differs from the Eulerian period. Trapped particles have

$$
X^{\prime}\left(T_{L}\right)=X(0)=X\left(T_{L}\right)-c T_{L} \quad \Rightarrow \quad u_{L}=\frac{X\left(T_{L}\right)-X(0)}{T_{L}}=c
$$

Back to random wave

From

$$
\psi=\frac{U_{0}}{\ell} \operatorname{Re}\left[a(t) e^{\imath k x}\right] \sin (\ell y)
$$

with

$$
a=\frac{\gamma}{2} \int_{-\infty}^{t} d \tau e^{-\left(\gamma-\frac{1}{2} \vartheta\right) \tau} r(t-\tau)
$$

we find

$$
\begin{gathered}
\overline{\psi(x, y, t) \psi\left(x^{\prime}, y^{\prime}, t^{\prime}\right)}= \\
\frac{U_{0}^{2}}{2 \ell^{2}} e^{-\gamma\left(t-t^{\prime}\right)} \cos \left[k\left(x-x^{\prime}\right)-\omega\left(t-t^{\prime}\right)\right] \sin (\ell y) \sin \left(\ell y^{\prime}\right) \\
R_{m n}(\tau)=\frac{1}{2} U_{0}^{2} e^{-\gamma \tau}\left(\begin{array}{cc}
\cos \omega \tau \cos ^{2} \ell y & \frac{k}{\ell} \sin \omega \tau \sin \ell y \cos \ell y \\
-\frac{k}{\ell} \sin \omega \tau \sin \ell y \cos \ell y & \frac{k^{2}}{\ell^{2}} \cos \omega \tau \sin ^{2} \ell y
\end{array}\right)
\end{gathered}
$$

This gives

$$
D_{m n}=\frac{1}{2} \frac{U_{0}^{2}}{\gamma^{2}+\omega^{2}}\left(\begin{array}{cc}
\gamma \cos ^{2} \ell y & \omega \frac{k}{\ell} \sin \ell y \cos \ell y \\
-\omega \frac{k}{\ell} \sin \ell y \cos \ell y & \gamma \frac{k^{2}}{\ell^{2}} \sin ^{2} \ell y
\end{array}\right)
$$

The diffusivities and Stokes' drift are given by

$$
\begin{gathered}
\left(K_{11}, K_{22}\right)=\frac{1}{2} U_{0}^{2} \frac{\gamma}{\gamma^{2}+\omega^{2}}\left(\cos ^{2} \ell y, \frac{k^{2}}{\ell^{2}} \sin ^{2} \ell y\right) \\
\Psi_{3}=-A_{12}=A_{21}=-\frac{1}{2} U_{0}^{2} \frac{k}{\ell} \frac{\omega}{\gamma^{2}+\omega^{2}} \sin \ell y \cos \ell y \\
u^{L}=u^{S}=\frac{1}{2} U_{0}^{2} k \frac{\omega}{\gamma^{2}+\omega^{2}} \cos 2 \ell y \\
v^{L}=\frac{1}{2} U_{0}^{2} \frac{k^{2}}{\ell} \frac{\gamma}{\gamma^{2}+\omega^{2}} \sin 2 \ell y
\end{gathered}
$$

Demos, Page 8: structure $\langle K, u, v\rangle$ Demos, Page 8: stokes drift <lin vs act sd> <mean drift>

Conclusions:

- Rossby waves cause mean westward drifts at the edges and eastward drifts in the center.
- Eddy diffusivities are spatially variable and anisotropic.

Chaotic advection

We start with the basic wave

$$
\psi=\frac{\epsilon}{\pi} \sin (\pi[x-t]) \sin (\pi y)
$$

and add a small amount of a second wave

$$
\psi=\sqrt{1-16 \alpha^{2}} \frac{\epsilon}{\pi} \sin (\pi[x-t]) \sin (\pi y)+\alpha \frac{\epsilon}{\pi} \sin \left(4 \pi\left[x-c_{1} t\right]\right) \sin (4 \pi y)
$$

Demos, Page 8: psi <alpha=0> <alpha=0.01> <alpha=0.1>
When we have α non-zero, the trajectories become less regular in the vicinity of the stagnation points. A line of particles approaching the point begins to fold, with some fluid crossing into the interior and some being ejected. Which way a parcel goes depends on the phase of the perturbing wave as it nears the stagnation point.

Demos, Page 9: lobe dynamics <alpha 0.008>
We can look at Poincaré sections (snapshots at the period of the perturbing wave) at various amplitudes to see the mixing regions Demos, Page 9: poincare sections <alpha=0> <alpha=0.002> <alpha=0.004> <alpha=0.008> <alpha=0.016> <alpha=0.032> <alpha=0.064> <alpha=0.128>

The mixing across the channel is still blocked for α small enough <0.05 so the mixing is still diffusion-limited, although some gain is realized by enhanced flux out of the wall and a decrease in the width of the blocked region.

Demos, Page 9: Continuum <steady> <weak>

References

Flierl, G.R. (1981) Particle motions in large amplitude wave fields. Geophys. Astrophys. Fluid Dyn., 18, 39-74.
Pierrehumbert, R.T. (1991) Chaotic mixing of tracer and vorticity by modulated travelling Rossby waves. Geophys. Astrophys. Fluid Dyn., 58, 285-319.

Active Tracers

We review mixing length theory applied to a set of active scalars (think in terms of biological properties):

$$
\frac{D}{D t} b_{i}+\nabla \cdot\left(\mathbf{u}_{b i o} b_{i}\right)-\nabla \kappa \nabla b_{i}=\mathcal{B}_{i}(\mathbf{b}, \mathbf{x}, t)
$$

Split the field into an eddy part which varies rapidly in space and time and a mean part which changes over larger (order $1 / \epsilon$) horizontal distances and longer (order $1 / \epsilon^{2}$) times:

$$
b_{i}=\bar{b}_{i}(z \mid \mathbf{X}, T)+b_{i}^{\prime}(\mathbf{x}, z, t \mid \mathbf{X}, T)
$$

We must allow for short vertical scales in both means and fluctuations. Counterbalancing this difficulty is the fact that vertical velocities tend to be weak (order $\frac{U}{f L} \times \frac{U H}{L}$). We
assume the mean flows are small $\bar{u} \sim \varepsilon \mathbf{u}^{\prime}$ and the coefficients in the reaction terms vary rapidly in the vertical but slowly horizontally and in time.

$$
\begin{aligned}
& \frac{D}{D t}- \nabla \cdot \kappa \nabla \longrightarrow \\
& {\left[\frac{\partial}{\partial t}+u_{m}^{\prime} \nabla_{m}-\nabla \cdot \kappa \nabla-\frac{\partial}{\partial z} \kappa_{v} \frac{\partial}{\partial z}\right] } \\
&+\varepsilon\left[u_{m}^{\prime} \nabla_{m}+\bar{u}_{m} \nabla_{m}-\nabla_{m} \kappa_{m n} \nabla_{n}-\nabla_{m} \kappa_{m n} \nabla_{n}+\frac{R o}{\varepsilon} w^{\prime} \frac{\partial}{\partial z}\right] \\
&+\varepsilon^{2}\left[\frac{\partial}{\partial T}+\bar{u}_{m} \nabla_{m}-\nabla_{m} \kappa_{m n} \nabla_{n}+\frac{R o}{\varepsilon} \bar{w} \frac{\partial}{\partial z}\right]
\end{aligned}
$$

Vertical Structure

1) We assume the case with no flow has a stable solution:

$$
\frac{\partial}{\partial z} w_{b i o} \bar{b}_{i}=\frac{\partial}{\partial z} \kappa_{v} \frac{\partial}{\partial z} \bar{b}_{i}+\mathcal{B}_{i}(\overline{\mathbf{b}}, z \mid \mathbf{X}, T)
$$

Demos, Page 10: bio dynamics <growth rates>
2) The eddy-induced perturbations satisfy

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial t}+\mathbf{u}^{\prime} \cdot \nabla-\nabla \cdot \kappa \nabla\right] b_{i}^{\prime}+\frac{\partial}{\partial z} w_{b i o} b^{\prime}=} \\
& \sum_{j} \frac{\partial \mathcal{B}_{i}}{\partial b_{j}} b_{j}^{\prime}-\mathbf{u}^{\prime} \cdot \nabla \bar{b}_{i} \equiv \mathcal{B}_{i j} b_{j}^{\prime}-\mathbf{u}^{\prime} \cdot \nabla \bar{b}_{i}
\end{aligned}
$$

with $\nabla=(\partial / \partial X, \partial / \partial Y, \partial / \partial z)$.
3) The equation for the mean is

$$
\begin{gathered}
{\left[\frac{\partial}{\partial T}+\overline{\mathbf{u}} \cdot \nabla-\mathbb{\nabla} \kappa \nabla\right] \bar{b}_{i}+\nabla \cdot\left(\overline{\mathbf{u}^{\prime} b^{\prime}}\right)+\frac{\partial}{\partial z} w_{b i o} \bar{b}_{i}=} \\
\mathcal{B}_{i}(\overline{\mathbf{b}}, z \mid \mathbf{X}, T)+\frac{1}{2} \frac{\partial^{2} \mathcal{B}_{i}}{\partial b_{j} \partial b_{k}} \overline{b_{j}^{\prime} b_{k}^{\prime}}
\end{gathered}
$$

Summary:

Eddies generate fluctuations by horizontal and vertical advection of large-scale gradients, but the strength and structure depends on the biologically-induced perturbation decay rates.

Perturbations generate eddy fluxes and alter the average values of the nonlinear biological terms.

A simple biological model (mixed layer):

$$
\begin{aligned}
\frac{D}{D t} P & =\frac{\mu P N}{N+k_{s}}-\frac{g}{\nu} Z[1-\exp (-\nu P)]-d_{P} P+\nabla \kappa \nabla P \\
\frac{D}{D t} Z & =\frac{a g}{\nu} Z[1-\exp (-\nu P)]-d_{Z} Z+\nabla \kappa \nabla Z \\
\frac{D}{D t} N & =-\frac{\mu P N}{N+k_{s}}+\frac{(1-a) g}{\nu} Z[1-\exp (-\nu P)] \\
& +d_{P} P+d_{Z} Z+\nabla \kappa \nabla N \\
\quad & \text { or } N=N_{T}-P-Z
\end{aligned}
$$

Mean-field approach

We can get a very similar picture using the mean-field approximation: take

$$
\begin{gathered}
\frac{\partial}{\partial t} \bar{b}_{i}+\bar{u} \cdot \nabla \bar{b}_{i}+\nabla \cdot\left(\overline{\mathbf{u}^{\prime} b^{\prime}}\right)+\frac{\partial}{\partial z} w_{b i o} \bar{b}_{i}-\nabla \kappa \nabla \bar{b}_{i}=\overline{\mathcal{B}_{i}\left(\overline{\mathbf{b}}+\mathbf{b}^{\prime}, \mathbf{x}, t\right)} \\
\simeq \mathcal{B}_{i}(\overline{\mathbf{b}}, z \mid \mathbf{x}, t)+\frac{1}{2} \frac{\partial^{2} \mathcal{B}_{i}}{\partial b_{j} \partial b_{k}} \overline{b_{j}^{\prime} b_{k}^{\prime}} \\
\frac{\partial}{\partial t} \mathbf{b}_{i}^{\prime}+\bar{u} \cdot \nabla \mathbf{b}_{i}^{\prime}+\nabla \cdot\left(\mathbf{u}^{\prime} b_{i}^{\prime}-\overline{\mathbf{u}^{\prime} b^{\prime}}\right)+\frac{\partial}{\partial z} w_{b i o} \mathbf{b}_{i}^{\prime}-\nabla \kappa \nabla \mathbf{b}_{i}^{\prime}= \\
-\mathbf{u}^{\prime} \cdot \nabla \bar{b}_{i}+\mathcal{B}_{i}\left(\overline{\mathbf{b}}+\mathbf{b}^{\prime}, \mathbf{x}, t\right)-\overline{\mathcal{B}_{i}\left(\overline{\mathbf{b}}+\mathbf{b}^{\prime}, \mathbf{x}, t\right)}
\end{gathered}
$$

or (dropping the quadratic and higher terms)

$$
\frac{\partial}{\partial t} \mathbf{b}_{i}^{\prime}+\bar{u} \cdot \nabla \mathbf{b}_{i}^{\prime}+\frac{\partial}{\partial z} w_{b i o} \mathbf{b}_{i}^{\prime}-\nabla \kappa \nabla \mathbf{b}_{i}^{\prime} \simeq-\mathbf{u}^{\prime} \cdot \nabla \bar{b}_{i}+\mathcal{B}_{i j} b_{j}^{\prime}
$$

The differences are subtle: the MFA does not presume that the scale of \bar{b}_{i} is large but linearizes in a way which may not be consistent.

Separable Problems

The mesoscale eddy field has horizontal velocities in the near-surface layer which are nearly independent of z, and the vertical velocity increases linearly with depth $w^{\prime}=$ $s(\mathbf{x}, t) z$. The stretching satisfies

$$
s(\mathbf{x}, t)=-\nabla \cdot \mathbf{u}(\mathbf{x}, t)
$$

For linear (or linearized perturbation) problems in the near-surface layers, we can separate the physics and the biology using Greens' functions.

We define the Greens function for the horizontal flow problem:

$$
\left(\frac{\partial}{\partial t}+\mathbf{u}(\mathbf{x}, t) \cdot \nabla-\nabla \kappa \nabla\right) G\left(\mathbf{x}, \mathbf{x}^{\prime}, t-t^{\prime}\right)=\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

The perturbation equations can now be solved:

$$
\begin{aligned}
b_{i}^{\prime}= & -\int d \mathbf{x}^{\prime} \int d t^{\prime} G\left(\mathbf{x}, t \mid \mathbf{x}^{\prime}, t^{\prime}\right) u_{m}^{\prime}\left(\mathbf{x}^{\prime}, t^{\prime}\right) \phi_{m, i}\left(z, t-t^{\prime}\right) \\
& -\int d \mathbf{x}^{\prime} \int d t^{\prime} G\left(\mathbf{x}, t \mid \mathbf{x}^{\prime}, t^{\prime}\right) s^{\prime}\left(\mathbf{x}^{\prime}, t^{\prime}\right) \varphi_{i}\left(z, t-t^{\prime}\right)
\end{aligned}
$$

The two functions representing the biological dynamics both satisfy

$$
\frac{\partial}{\partial \tau} \varphi_{i}=\frac{\partial}{\partial z} \kappa_{v} \frac{\partial}{\partial z} \varphi_{i}+\mathcal{B}_{i j} \varphi_{j}
$$

with $\mathcal{B}_{i j}=\partial \mathcal{B}_{i} / \partial b_{j}$. These give the diffusive/ biological decay of standardized initial perturbations

$$
\phi_{m, i}(z, 0)=\mathbb{\nabla}_{m} \bar{b}_{i} \quad, \quad \varphi_{i}(z, 0)=z \frac{\partial}{\partial z} \bar{b}_{i}
$$

Simple Example

If we ignore vertical diffusion and advection and consider only one component with $\mathcal{B}_{11}=-\lambda$, we have

$$
\phi_{m, i}=e^{-\lambda \tau} \nabla_{m} \bar{b}_{i}
$$

so that

$$
b_{i}^{\prime}=-\left[\int d \mathbf{x}^{\prime} \int d t^{\prime} e^{-\lambda\left(t-t^{\prime}\right)} G\left(\mathbf{x}, t \mid \mathbf{x}^{\prime}, t^{\prime}\right) u_{n}^{\prime}\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right] \mathbb{\nabla}_{n} \bar{b}_{i}
$$

The eddy flux takes the form

$$
\begin{aligned}
\overline{u_{m}^{\prime} b^{\prime}} & =-\left[\int d \mathbf{x}^{\prime} \int d t^{\prime} e^{-\lambda\left(t-t^{\prime}\right)} \overline{u_{m}^{\prime}(\mathbf{x}, t) G\left(\mathbf{x}, t \mid \mathbf{x}^{\prime}, t^{\prime}\right) u_{n}^{\prime}\left(\mathbf{x}^{\prime}, t^{\prime}\right)}\right] \nabla_{n} \bar{b}_{i} \\
& =-\left[\int d \mathbf{x}^{\prime} \int d t^{\prime} e^{-\lambda\left(t-t^{\prime}\right)} R_{m n}\left(\mathbf{x}, t \mid \mathbf{x}^{\prime}, t^{\prime}\right)\right] \nabla_{n} \bar{b}_{i}
\end{aligned}
$$

If we split the right-hand side into symmetric and antisymmetric parts, we find

$$
\begin{aligned}
\overline{u_{m}^{\prime} b^{\prime}} & =-K_{m n}^{\lambda} \nabla_{n} \bar{b}_{i}+\epsilon_{m n k} \Psi_{k}^{\lambda} \nabla_{n} \bar{b}_{i} \\
& =-K_{m n}^{\lambda} \mathbb{\nabla} \bar{b}_{i}-\left(\epsilon_{m n k} \nabla_{n} \Psi_{k}^{\lambda}\right) \bar{b}_{i}+\epsilon_{m n k} \nabla_{n}\left(\Psi_{k}^{\lambda} \bar{b}_{i}\right)
\end{aligned}
$$

The last term has no divergence and can be dropped. Thus the eddy flux is a mix of diffusion and Stokes' drift:

$$
\overline{u_{m}^{\prime} b^{\prime}}=-K_{m n}^{\lambda} \nabla \bar{b}_{i}+V_{m}^{\lambda} \bar{b}_{i}
$$

Both coefficients depend on the biological time scale λ^{-1}.
For the random Rossby wave case, the Stokes drift term is

$$
\mathbf{V}^{\lambda}=\frac{K E}{(\gamma+\lambda)^{2}+\frac{1}{4}}(-\cos (2 y), 0)
$$

while the diffusivity tensor is

$$
K_{i j}^{\lambda}=2(\gamma+\lambda) \frac{K E}{(\gamma+\lambda)^{2}+\frac{1}{4}}\left(\begin{array}{cc}
\cos ^{2}(y) & 0 \\
0 & \sin ^{2}(y)
\end{array}\right)
$$

Demos, Page 13: effective coeff <effective k,v>

Not so simple example

"Mixing length" models

$$
F l u x(b)=-\kappa_{c} \nabla b
$$

even if appropriate for passive tracers are not suitable for biological properties whose time scales may be comparable to those in the physics. Instead, we find

$$
\overline{\mathbf{u}_{m}^{\prime} b_{i}^{\prime}}=-\left[\int d \tau e^{\mathcal{B}_{i j} \tau} R_{m n}(\tau)\right] \nabla_{n} \bar{b}_{j}
$$

where $R_{m n}$ is the equivalent of Taylor's Lagrangian covariance (but including κ).
We divide the coefficient into symmetric (K) and antisymmetric terms related to the Stokes drift (V)

$$
\overline{\mathbf{u}_{m}^{\prime} b_{i}^{\prime}}=-K_{m n}^{i j} \nabla_{n} \bar{b}_{j}+V_{m}^{i j} \bar{b}_{j}
$$

Note that

- Eddy diffusivities and wave drifts mix different components (flux of P depends on gradient of Z).
- If R has a negative lobe, the biological diffusivities can be larger than that of a passive scalar
- The quasi-equilibrium approximation

$$
\mathcal{B}_{i j} b_{j}^{\prime}=\mathbf{u}^{\prime} \cdot \nabla \bar{b}_{i}
$$

works reasonably well in the upper water column. In particular

$$
\mathcal{B}_{21}=g \bar{Z} \exp (-\nu \bar{P})>0 \quad . \quad \mathcal{B}_{22}=0
$$

so that

$$
P^{\prime}=\frac{1}{\mathcal{B}_{21}} \mathbf{u}^{\prime} \cdot \nabla \bar{Z} \quad \text { unlike } \quad C^{\prime}=-\boldsymbol{\xi} \cdot \nabla \bar{C}
$$

Demos, Page 14: complex diffusion <transport coeff: display -geometry $+0+0$-bordercolor white -border 20×20-rotate 90 ~glenn/12.822t/graphics/t0.ps> up Z grad flux of Pt1.ps <quasiequilibrium fluxes: display -geometry +0+0 bordercolor white -border 20×20-rotate 90 ~glenn/12.822t/graphics/t1a.ps> downgradient Kpp,KZZt2.ps

Eulerian-Lagrangian

If $\kappa=0$, we can relate the relevant form of the Eulerian covariance

$$
R_{m n}\left(\mathbf{x}, t \mid \mathbf{x}^{\prime}, t^{\prime}\right)=\overline{u_{m}^{\prime}(\mathbf{x}, t) G\left(\mathbf{x}, t \mid \mathbf{x}^{\prime}, t^{\prime}\right) u_{n}\left(\mathbf{x}^{\prime}, t^{\prime}\right)}
$$

to Taylor's form. The Greens' function equation

$$
\frac{\partial}{\partial t} G+\mathbf{u}(\mathbf{x}, t) \cdot \nabla G=\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

has a solution

$$
G\left(\mathbf{x}, t \mid \mathbf{x}^{\prime}, t^{\prime}\right)=\delta\left(\mathbf{x}-\mathbf{X}\left(t \mid \mathbf{x}^{\prime}, t^{\prime}\right)\right)
$$

where

$$
\frac{\partial}{\partial t} \mathbf{X}\left(t \mid \mathbf{x}^{\prime}, t^{\prime}\right)=\mathbf{u}(\mathbf{X}, t) \quad, \quad \mathbf{X}\left(t^{\prime} \mid \mathbf{x}^{\prime}, t^{\prime}\right)=\mathbf{x}^{\prime}
$$

gives the Lagrangian position of the particle initially at \mathbf{x}^{\prime} at time t^{\prime}. But it is more convenient to back up along the trajectory and let

$$
G\left(\mathbf{x}, t \mid \mathbf{x}^{\prime}, t^{\prime}\right)=\delta\left(\mathbf{x}^{\prime}-\boldsymbol{\xi}\left(t-t^{\prime} \mid \mathbf{x}, t\right)\right)
$$

where the particle at $\boldsymbol{\xi}$ at time t^{\prime} passes \mathbf{x} at time t (and takes a time τ for this tranistion). Thus the $\boldsymbol{\xi}$'s give the starting position, which, for stochastic flows varies from realization to realization. We can solve

$$
\frac{\partial}{\partial \tau} \boldsymbol{\xi}(\tau \mid \mathbf{x}, t)=-\mathbf{u}(\boldsymbol{\xi}(\tau \mid \mathbf{x}, t), t-\tau) \quad, \quad \boldsymbol{\xi}(0 \mid \mathbf{x}, t)=\mathbf{x}
$$

for $\tau=0$ to $\tau=t-t^{\prime}$ to find $\boldsymbol{\xi}$.
We can now define the generalization of the Lagrangian correlation function used by Taylor

$$
\begin{aligned}
R_{m n}\left(t-t^{\prime}, \mathbf{x}\right) & =\int d \mathbf{x}^{\prime} \overline{u^{\prime}(\mathbf{x}, t) G\left(\mathbf{x}, t \mid \mathbf{x}^{\prime}, t^{\prime}\right) u^{\prime}\left(\mathbf{x}^{\prime}, t^{\prime}\right)} \\
& =\overline{u_{m}^{\prime}(\mathbf{x}, t) u_{n}^{\prime}\left(\boldsymbol{\xi}\left(t-t^{\prime} \mid \mathbf{x}, t\right), t-\left(t-t^{\prime}\right)\right)}
\end{aligned}
$$

or

$$
R_{m n}(\tau, \mathbf{x})=\overline{u_{m}^{\prime}(\mathbf{x}, t) u_{n}^{\prime}(\boldsymbol{\xi}(\tau \mid \mathbf{x}, t), t-\tau)}
$$

For homogeneous, stationary turbulence (on the scales intermediate between the eddies and the mean), this will be equivalent to Taylor's

$$
R_{m n}(\tau)=\overline{u_{m}^{\prime}\left(\mathbf{X}\left(t^{\prime}+\tau \mid \mathbf{x}^{\prime}, t^{\prime}\right), t^{\prime}+\tau\right) u_{n}^{\prime}\left(\mathbf{x}^{\prime}, t^{\prime}\right)}
$$

but we include inhomogeneity and (for, general G, diffusion).

[^0]: Demos, Page 1: Random flight <dispersion> <mean sq displacement>

