
Particle Dispersion 

Random Fl ight  - L a g r a n g i a n  d i s p e r s i o n  

As an exanlple, we examine the randoin flight model. which assumes that the accel-
erations have a stochastic component and use Newton's equations 

d X  = V d t  

d V  = A d t  +P d R  

where A is the acceleration produced by deterministic (or large-scale) forces. We include 
randoin accelerations with the random increment d R  satisfying ( d R i  d R j )  = Gijdt. 

As examples, consider a drag law for the acceleration 

with u being the water velocity. The dispersion is determined by P and T; from the 
equations: we can show that 

The latter corresponds to a diffusivity of r; = p 2 / 2 r 2 .  

Area grows like 4 ~ t(6r;t in 3-D) 
Velocity variance is TK 
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Taylor dispersion 

In 1922, Taylor described the dispersion under the assumption that the Lagrangian 
velocity had a known covariance structure. He considered just 

We find that 
3
-X,Xj = K X j  + x,y
3t 

and, in the ensemble average, 

If we substitute 
t 

X = Xo + 6V(tl)dt '  

and look at  the case where (V)= 0 and the flow is statioilary, we have 

where R& is the covariance of the Lagrangian velocities 

For isotropic motions RL.(t)= U2RL(t)bi jwith R L ( t )being the autocorrelation function; 
the change in x-variance 

%J.
is given by 

From this formulal we see that 

For short times, 
(x2)= U2t2 

For long times, if the integral Tint= JrRL(t)dtis finite and non-zero, 



Relation to diffiisivity 

Consider the diffusion of a passive scalar 

and define moments of the distribution 

Integrating the diffusion equation gives conservation of the total scalar, under the assump- 
tion that the initial distribution is compact and the values decay rapidly at infinity 

The first inoment gives 

In the absence of flow and with a constant r;, &(x) = 0. Otherwise, the center of mass 
migrates according to a weighted version of u+VK: it inoves with the flow and upgradient 
in diffusivity. 

The second inonlent a a
-(x2) = =(xu)+ 2(- (xr;))
a t  3x 

implies that 

3 ar; 
-a t  [(x2)- ( x ) ~ ]= 2 [(xu) - (x)(u)+ (xz) - (x)(%) + 2(s)"I 


For uniform flow and constant diffusivity, the blob spreads in x a t  a rate 2 ~ .Thus we can 
identify the effective diffusivity 

K = U 2 ~ i n t  

Strain in the flow and curvature in K will alter the rate of spread. 



Small amplitude motions 

If we assume that the scale of a typical particle excursion over time Tint is small 
compared to the scale over which the flow variesl we can relate the Lagrangian and Eulerian 
statistics. The displacement ti= Xi(t)- Xi(0) satisfies 

and we can substitute the lowest order solution 

into the second term above to write 

and average, recognizing that the mean Lagrangian velocity is just (;ti): 

For simplicity, we assuine that the turbulent velocities are large coinpared to the inean; 
then this becomes 

3 "1 ~ i j ( x >f - t i )= (ui)+ "[d ~ R i j(x ,T )(u:) = + 3 x j . o( ~ i )  

Let us assuine that the integrals with respect to T exist and split the covariance into 
its syininetric and antisyminetric parts 

with 

We can write an arbitrary ailtisymmetric tensor in terins of the unit ailtisymmetric tensor 

so that the contribution to the Lagrangian velocity is 



Note that the antisymmetric part of the contribution to the Lagrangian velocity is nondi- 
vergent: 

Thus the Lagrangian mean velocity has contributions from the mean Eulerian flowl from 
the Stokes' drift, and a term which tends to move into regions of higher diffusivity 

We will discuss the meanings of these terms in more detail next. 

Random Rossby Waves 
Consider a randomly-forced R.ossby wave in a channel: 

where is randomly distributed on a disk of radius ro. This gives a streamfuilction 

with 

and w = - f l k / ( k 2  +e2) .  
d T e - ( ~ - $ " ~ T ( t- T )  



Stokes' drift 

Consider first the steady wave case. 


$ = -t .s i n ( ~ [ x- t]) s i n ( ~ y )  

7r 

We look at  the particle trajectories by solving the Lagrangian equations as above 

For small t (which is the ratio of the flow speed to the phase speed, we can find an 
approximate solution (as before) by iterating 

The mean Lagrangian drift is therefore 

-
Rij (x,T)d~ 

Treating the mean as a phase average gives 

cos TT cos2TY sin 7rr sin TYcos TY 
2Rij (T) = 22 (- sin TT sin TY cos 7rv cos TT sin TY 

the integral gives 

t sin ~y cos 7rv sin ~t cos2 TY (1- cos ~ t )  
Q j ( t )  =1 R - ( T ) ~ T=-

-(1 - cos xt)  sin xy cos x?ry sin TT sin2 xy 0 

so that the drift is -a 2 
u, = -El = -cos(27q)[l- cos(TIt)]

a t  2 

-3 t2 
UL = -[2 =-sin(2xv) sin7rt 

3t  2 

Note that there is a time-averaged drift 

prograde on the walls and retrograde in the center. 

6 



Note that we can split Dij as usual: 

%" 

with the first term giving the up-diffusive-gradient transport associated with the symmetric 
part of j' Rij and the second, llondivergent part: arising from the antisymmetric term; gives 
the Stokes drift. For the primary wave, 

K . .  -	-c2 ( ~ i ~ 7 r t  r2lrv 

2lr sin lrt sin2lr?rl/ 

and has no time average, while 

produces the nondivergeilt Stokes drift (and does have a mean). Demos, Page 7: 
d r i f t  <amp=O. 2> <amp=O. 2 comoving> <amp=l. O> <amp=l. 0 comoving> 
<stokes d r i f t >  <mean> 

FINITEAMPLITUDE 


In the frame of reference of the wave ( X i  = X - ct) 


Thus particles simply move along the streamlines. At some Lagrailgian period TL, the 
particle will have moved one period to the left so that 

Stokes drifts occur when the Lagrallgian period differs from the Eulerian period. Trapped 
particles have 



Back to  random wave 

with 

dTe- (~ -+"~r ( t- T) 

we find 
~ ( x ,Y,  t)*(x1, Y', t l j  = 

2
-Uo -y(t-t l) cos[k(x- x') -w(t - t')] sin(@) sin(!yl) 
2e2 

cos 1 wT C O S ~
2 -7, 

ey $ sin ,w r  sill& cos !v 
R,, (7)= -UOe

2 -$ sill w r  siillg cos e~ k 2 cos WT sin2!v 

This gives 

y cos2 w$ sin !V cos !y
Dm, = -

-w $ sin Vg cos Vg y k2 sin28~ 

The diffusivities and Stokes' drift are given by 

1 k w 
Q3 = -Al2 = AZ1= --U - sin codel/

2 O e y 2 + d  

L ' 7 1  w 
u = U  = -u2k cos 2ey

2 O y 2 + w 2  

L 1 2 k 2  
a = - U - sin 2tg

2 O e y 2 + w 2  

Demos, Page 8: s t r u c t u r e  <K,u,v> Demos, Page 8: s tokes  d r i f t  <lin 
vs a c t  sd>  <mean d r i f t >  

Conclusions: 

R.ossby waves cause mean westward drifts at the edges and eastward drifts in the 
center. 

Eddy diffusivities are spatially variable and anisotropic. 



Chaotic advection 

We start with the basic wave 

$ = -t .s i n ( ~ [ x- t]) s i n ( ~ y )  
IT 


and add a small amount of a second wave 

Demos, Page 8: psi <alpha=O> <alpha=O. 01> <alpha=O. I >  
When we have a non-zero, the trajectories become less regular in the vicinity of the 

stagnation points. A line of particles approachiilg the point begins to fold, with some fluid 
crossing into the interior and some being ejected. Which way a parcel goes depends on the 
phase of the perturbing wave as it nears the stagnation point. 

Demos, Page 9: lobe dynamics <alpha 0.008> 
We can look at  Poincark sections (snapshots at the period of the perturbing wave) 

at various amplitudes to see the mixing regions Demos, Page 9: poincare sections 
<alpha=O> <alpha=O. 002> <alpha=O. 004> <alpha=O. 008> <alpha=O. 016> 
<alpha=O. 032> <alpha=O. 064> <alpha=O. 128> 

The inixing across the channel is still blocked for a small enough < 0.05 so the inixing 
is still diffusion-limited: although some gain is realized by enhanced flux out of the wall 
and a decrease in the width of the blocked region. 

Demos, Page 9 : Continuum <steady> <weak> <strong> 
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Active Tracers 

We review mixing length theory applied to a set of active scalars (think in terms of 
biological properties): 

Split the field into an eddy part which varies rapidly in space and time and a mean part 
which changes over larger (order l/t) horizontal distances and longer (order l/t2)times: 

We must allow for short vertical scales in both means and fluctuations. Counterbalancing 
this difficulty is the fact that vertical velocities tend to be weak (order x F).We 



assume the mean flows are small E iiNU' and the coefficients in the reaction terms vary 
rapidly in the vertical but slowly horizontally and in time. 

Vertical Strnctlire 

1) We assume the case with no flow has a stable solution: 

Demos, Page 10: bio dynamics <growth rates> 

2) The eddy-induced perturbations satisfy 

with W = ( 3 / 3 X ,  3 /3Y,  3/82) .  

3) The equation for the mean is 


Summary: 

Eddies generate fluctuations by horizoiltal and vertical advection of large-scale gra- 
dients; but the strength and structure depends on the biologically-induced perturbation 
decay rates. 

Perturbatioils generate eddy fluxes and alter the average values of the nonlinear bio- 
logical terms. 



NPZ 

A simple biological model (mixed layer): 

Mean-field approach 

We call get a very similar picture using the mean-field approximation: take 

-u' . Vb, + +b',X,t)  - &((b +bb',X,t )  

or (dropping the quadratic and higher terms) 

The differences are subtle: the MFA does not presume that the scale of Zi is large but 
linearizes in a way which may not be consisteilt. 



Separable Problems 

The inesoscale eddy field has horizontal velocities in the near-surface layer which 
are nearly independent of z; and the vertical velocity increases linearly with depth w' = 

s(x; t)z. The stretching satisfies 

For linear (or linearized perturbation) problems in the near-surface layers, we can separate 
the physics and the biology using Greens' functions. 

We define the Greens function for the horizontal flow problem: 

(4+ u(x,  t)  V -V 1G(x,x'; t - t') = 6(x - x1)6(t- t') 

The perturbation equations can now be solved: 

-1dx' 1dt1G(x; t lx ' ,  t')s'(xl, t l)pi(z,  t - t l )  

The two functions representing the biological dynamics both satisfy 

with Bij = 3Bi/3bj. These give the diffusive/ biological decay of standardized initial 
perturbations 

a -
@m,i(z,0) = v,& , pi(z, 0) = z-bi

3% 



Simple Example 

If we ignore vertical diffusion and advectioil and consider only one component with 
all= -A ,  we have 

4m:i= e-X7Vm& 

so that 
Ia, = - [Jdxf J i t l c * ( t - t ~ c ( ~ ,  tl).h(xI, It l x ~ ,  

The eddy flux takes the form 

If we split the right-hand side into symmetric and ailtisymmetric parts, we find 

The last term has no divergence and can be dropped. Thus the eddy flux is a mix of 
diffusion and Stokes' drift: a= -K:,V& + v A ~ ,  
Both coefficients depend on the biological time scale A p l .  

For the random R.ossby wave case: the Stokes drift term is 

while the diffusivity tensor is 

Demos, Page 13: effective coeff <effective k , v >  



Not so simple example 

"Mixing length;' models 
Flux(b)= - K , V ~  

even if appropriate for passive tracers are not suitable for biological properties whose time 
scales may be comparable to those in the physics. Instead, we find 

where R,, is the equivalent of Taylor's Lagrangian covariance (but including K ) .  

We divide the coefficient into symmetric ( K )and antisymmetric terms related to the 
Stokes drift (V) 

Note that 
Eddy diffusivities and wave drifts mix different components (flux of P depends on 
gradient of 2). 
If R has a negative lobe, the biological diffusivities can be larger than that of a passive 
scalar 
The quasi-equilibrium approximation 

works reasonably well in the upper water column. In particular 

so that 
I 1 P I
= -ul . V 7  unlike C = -5 .  

Demos, Page 14: complex diffusion <transport coeff: display -geometry 
+0+0 -bordercolor white -border 20x20 -rotate 90 -glenn/l2.822t/graphics/tO.p~> 
up Z grad flux of Ptl .ps <quasiequilibrium fluxes: display -geometry +0+0 -
bordercolor white -border 20x20 -rotate 90 "glenn/l2.822t/graphics/tla.ps> down-
gradient Kpp,KZZt2.ps 



Eulerian-Lagrangian 

If K = 0: we can relate the relevant form of the Eulerian covariance 

to Taylor's form. The Greens' function equation 

has a solution 
G(x, t x ' ,  t') = 6 (x  - X ( t x l ,  t')) 

where 
3
- X ( t x ' , t l ) = u ( X , t )  , X ( t l x ' , t ' ) = x  I 
a t  

gives the Lagrangian position of the particle initially at x' at time t'. But it is more 
convenient to back up along the trajectory and let 

where the particle at c at time t' passes x at time t (and takes a time T for this tranistion). 
Thus the c's give the starting position: which, for stochastic flows varies from realization 
to realization. We can solve 

for T = 0 to T = t - t' to find c. 
We can now define the generalization of the Lagrangian correlation function used by 

Taylor 

R,,(t - t', x) = dx'ul(x, t)G(x, t x', t1)u'(x', t') 

= &(x; t)u:,([(t - t ' x ,  t) ;  t - (t - t')) 

For homogeneous, stationary turbulence (on the scales intermediate between the eddies 
and the mean), this will be equivalent to Taylor's 

R,,(T) = uk(X( t l  + TX' ,  t'), t' +T)u&(x', t') 

but we include inhomogeileity and (forl general G, diffusion). 


