
Nonlinear waves 

Theories of nonlinear waves have been developed for inany systems; we shall treat 
two-dimensional internal gravity wave dynamics here. 

We assume that there is no variation in y and write the horizontal and vertical velocities 
in terms of a streamfunction 

Forming a horizontal vorticity equation (C = -C. 9 = ik! 2 = ~ 2 1 1 , )gives the seta%-

We shall use B(z) = J Z  N2 for the basic stratification. 

Steadily propagating waves 

We begin by looking for steadily propagating nonlinear solutions. If we replace 6by 
-cz,a we have 

.7($ + cz; <) = -
3 b  
ax 


.7($ + cz, b + B(z)) = 0 

The last equation implies 

b +  B(z)  = B(z+ -)$ 
C 

which has a (by no means unique) solution 

For this solution, 11, and b go to zero smoothly and are related in the linear limit by 



which is exactly what one gets for linear waves. 
The vorticity equation now gives 

1a$ 
.J($ + cz, vZ$)= B'(z+$1~)--

c a x  

Therefore we have 
z $v" - - N ~ ( Z  + $/c) = Z ( z  + -)
C C 

or (taking the same kind of extension of the linear solution) 

Our final equation is 

When NZ(z)  is constant - unifornz stratification - the wave equation is linear with 
solutions like 

$ = Acos(kx) sin(mz) , c2 = NZ/(kZ+ mZ) 

with m = n / H  for a domain height H bounded by horizontal surfaces. This is the standard 
internal gravity wave dispersion relationship. For this case, the linear waves are a solution 
to the nonlinear equations. 

For a non-uniform stratification, if the wave amplitude is small enough; we can sepa- 
rate variables 

$ = d~(x)F(z) 

with 

The vertical structure equation gives a relationship between c and yZ while the horizontal 
equation just gives sinusoidal disturbances with wavenumber k = y. Note that there will 
be a gravest long wave nzode corresponding to the value c = el, where yZ goes through 
zero. 



Stokes' expansion 

For small, but finite, amplitude waves, we can Taylor-expand the equation to get 

This is like the oscillator equation with a iloilliilear restoring force. 
We expand 

$ = t$l + t2?JI2+ t3$3... 

2 c = Xo +€Al + t 2 X 2  

and use the ilotatioil S = N 2  to get a sequence of problenls 

The first equation gives 

We apply solvability coilditioils to the second and third equations: if 

then 

dx F  ( z )  cos(kx)R,, ( x ,  z )  = 0
H 

For the second equation, this implies X 1  = O and therefore 

1 1 
$2 = 2 - 2 ( z )- - A ~ ' ~ F Z O ( Z )  - X i / '  c o ~ ( 2 k x ) F ~ ~  

with 
3 2[s- n2k2+ XoS]F2T,,= S!F2 



Thus we see asynlmetries in the shape of the wave. If we multiply the F z z  equation above 
by F and integrate, we see that 

Thus for S' > 0 , FZ2will be negative and the cos(2kx) term will have a positive coefficient: 
streamfunction highs will be sharper and lows flatter. Also, the isotherms will have flat 
crests and sharp troughs. In addition, the $I2 field has a net nleail flow contribution. We 
can get rid of this term if we choose by going back to the equation for the vorticity and 
writing it as 

with the last term order E .  The sequence of equations now has 

This kind of ambiguity is characteristic of nonlinear waves - there can be many different 
solutions depending on the choice of functionals. Without some further specification, 
there will be aspects which are undetermined. One such consideration is elimination of the 
mean zonal flow at second order; another might be requiring that the volume between two 
isotherins be the same as in the case when the buoyancy is just B(z).  Since the streamlines 
are isotherms; this coines back to the same requirement: we want dx$ = 0 .  Therefore 
we choose 

1z1= -A;S'F~
2 

and $2 is just 
1 

$12 = --A3/' cos(2Xx)F22(~)
2 O 

For the third equation, we have 

Substitutiilg for the last term, doing the averages of the cosines, and integrating by parts 
a few tiines gives 

3 I 4 ~ 1 1
X2(F2S)+ Z ~ ~ 1 2 ( ~ 2 f i 2 ~ 1 )  ) = 0+ -A;(F

8 



This determines the corrections to the phase speed: 

For the case S' > 0, S" = 0 (buoyancy increasing quadratically with height), we have 

The wave moves more slowly, which makes sense since it extends downward more into the 
weakly stratified zone. 

Solitary wa,ves 

We can also find long wave solutions limit which are spatially isolated. Since such 
solutions decay to zero, the original choices for B(Z) = B(Z)  and Z(Z) = -ZN2(Z)/c  are 
necessary; the values are set along a streamline by the fields flowing in from +awhere 
the streanllines correspond to the background state. We now analyze 

a"under the assumption that u/c t and L - ~ c ' / ~ H  - t compared to -. WeSO that & 
then have the sinlpler sequence 

The lowest order equation now constrains oilly the vertical structure to be the long wave 
structure fuilctioil $1 = Q(x)Fl, and the eigenvalue to be Xo = el,2 . The solvability 
condition for the next order problem is 

To have decaying solutions a t  infinity, we must have A1 < 0; since c = el, - iXlcf,',, this 
implies that solitary waves move faster than the longest linear wave. This makes sense 
from the linear dispersioil relation: if 

and lc2 < O representing exponential decay (at the front) or growth (at the back); the 
phase speed will be increased rather than decreased from the long wave value N/m. In 
addition, to turn the rising wave on the left to a decaying wave on the right, we must 



have <Q 3( -QJ ill the center; this will occur when Q is positive. Solitary waves are 
a?

single-signed; for S' > 0, we find only waves with the isotherms depressed. 
We call write an explicit solution to 

with 

in the form of the hyperbolic secant squared solitary wave 

Kortweg-deVries equation 

We can examine the time-dependent behavior of nonlinear disturbances in the liinit 
where dispersion and nonlinearity are weak, but comparable, effects. We again use multiple 
scale expailsions with t as a "marker" 

To think of these as nondimensional, scale x - L ,  z - H ,  ?i, U H ;  < - U / H ,  c 

N O H ,t - L / N U H ;and b - NoU. Then S is the nondimeilsional function N'/N; and 
E = U/NoH = H Z / L 2 . The last equality expresses the relationship between U and L so 
that iloilliilearity and dispersion are similar in strength. 

The expailsion gives 

and 



At lowest order, we have disturbances moving at the long wave speed el, with vertical 
structure Fl,: 

(we'll drop the lw subscript henceforth). At the next order, we have 

We multiply both equations by F and average to find 

Multiplying the first equation by -co and adding gives 

The solvability condition gives the KdV equation: 

with A and B defined as before. 


CHARACTERISTICS The KdV eqn. has solitary wave solutions 
OF THE KDV EQN: 

as we found before. Note that if A = 6A/BL2; the speed is proportional to the amplitude 
cl = 2BA/3 and the width varies inversely L = ( ~ A / B ) ~ / ~ A ~ ~ / ~ .  

We can set up two waves to "collide" and find that they pass through (with a phase 
shift). Demos, Page 7: Collision <two waves> <summary> 



SOLITONS: An initial disturbance breaks up into a train of solitary waves ranked 
in amplitude plus a weak dispersive field. This is not a ilunlerical artifact or accident 
associated with a particular shape of initial conditions; "inverse scattering theory" gives 
an exact solution to the KdV problem treating the initial coildition as a potential. The 
solitoils correspoild to the bound states of the potential and the dispersive waves nlap to 
the scattering modes. 

Demos, Page 7: kdv s o l n s  < d i s p e r s i v e  amp=0.1> <one s o l i t o n  mp=l> 
<two mp=3> < t h r e e  mp=7>  

INTERNALWAVES: AS a warning, though, we cannot be sure that similar "particle- 
like" properties apply when the waves have different vertical modes or propagate in different 
directions. 

Group solitary waves 

Noilliilearity can also act on wave groups,where it can create solitary wave packets 
and lead to modulational instability - the breakdown of a regular wave into groups. The 
inath here is more complicated, unfortunately. We again expand the wave into 

etc., with X = ex; T = d, T = e2t.The sequence of problems becomes 

with N2 = const for simplicity and to avoid the Stokes' wave kind of nonlinearity. These 
give the basic wave solution 

with = exp(zkx - scukt) sin(mz), K = d m , and co = N / K .  
At order e 2 ,  we have 



- - 

We note that .J(gl,C 1 )  = 0 and .J(?l,l, b l )  = 0 .  The solvability condition comes from 
looking at the part of the second order solution which is proportional to 4; taking the 
second equation minus co tiines the first gives 

Therefore we require 

and 
A(X,  T ;  r )  = A(X - cYT, r )  

I11 addition to the forced solution, we can add a free solution at  order eZ so that 

g2 = P(X - cyT, T ,  r )  fW)(z) 

N aZ
bz = B(X - cyT, T ,  r )  f ( 2 )- --

K 3 x 3 ~ "  

At order e3 (sigh!) we find 


3 3 3 3 3 

-C3+ - C Z +  -C1 - -b3 - -bz + .J(?1,1, C Z )  + . J ( ? ~ , Z ,C l )  + 3($1, (1) = 0
3t 3T 3r 3x 3X 3 (X ,Y )  

3 3 a 3 3 a($1;b l )  
-b3 + -bz + -bl +NZ-$3 + N'-$JZ + .J(?l,l;b z )  + b l )  + = 0
3t 3T 3r dx 3X 3 ( X ;Y ) 


a2 32 

V2?1,3+ 2=?1,z + 7@$1 = C3 

We can collect the terms which are independent of x - cot 

3P 3P 32fC*) 3B a2 
( - - c  -)-322- + 2.J(q51, -$1)  = 03T ydX 3~ f 

3B 3B ( 1 )  3P N a2 
(- - c -) f +N2- f C*) - -.J(q!ll, 7$1)  = 0dT Y 3 X  3X K 

We use 
a2 3AI2 . 

$1)  = k2m- 3X sin 2mze J ( $ l ,  

to  find f C ~ J )= f ('1 = sin2mz and 

These deternine the corrections to the mean stratification and flow in the region of the 
wave packet. 

Collecting the terms which are proportional to 4 gives 

which determines the packet amplitude. 



SOLITARYWAVES: For these, we look at the steady solutions for the mean correctioils 

and 

the nonlinear Schriidinger equation, with 

Letting 
A = A exp(-zkclr) 

gives 

which has solutions 

Again, the nonlinear group travels faster with a speed depeildeilt on the amplitude and a 
width decreasing as A. increases. 

MODULATIONAL If we begin with an infinite regular wave A =INSTABILITY: 1+ 6A, 
we can look at the perturbation by envelope variability. The P and B equations will show 
rapid oscillations around 

and we'll ignore the high frequency variations. Then 

This gives 
6A e"' . r2= k2 (2wp- k 2 )  

This call be positive near k < 0.766m where P becomes large. 


