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10. Stochastic Processes


Basic Probability


Probability theory is a large subject that has developed deep philosophical roots and corresponding 

firmly held di�erences of opinion about its interpretation. Some of these disputes are very important, but 

for our purposes we will think of a probability density as a frequency function (histogram) in the limit 

of an infinite number of trials of an experiment as the bin-sizes go to zero. We assume that such a limit 

exists, and can be written for a random variable |> as s| (\ ) > where the subscript is the variable, and the 

argument \ is the values that | can take on (distinguishing the physical variable, e.g. a temperature, 

from its numerical value). Sometimes the subscript is dropped when the meaning is otherwise clear. 

Continued on next page...



10. ST O C H A S T IC P RO C ESSE S 33 

The use of s| (\ ) in practice means that one is referring to the probability that | lies in the interval 

\ � | � \ + g\ as s| (\ ) g\> that is, lying in some di�erential interval. 

Two very useful probability densities are the uniform one over interval O 

1 O O 
s| (\ ) =  > \ 

O 
� 
2 
� � 

2 

= � (\@O) (10.1) P 
and the normal (or ), 

2 

s| (\ ) =  s
2

1 

��
h�(\ �p)2@(2� )= (10.2) ¡ ¢ 

The latter is also written J p> �2 to denote a normal (Gaussian) density with mean p> and variance 

�2= Both (10.1,10.2) satisfy the necessary requirements, s 0> and� Z 4 

s| (\ ) g\ = 1= (10.3) 
�4 

Define a bracket, ? = A  as the averaging operator with meaning of the integral over all possible values 

of the argument times the probability density. Thus, Z 4 

? |  A= \ s| (\ ) g\ = p (10.4) 
�4 

(the mean, or center of mass), Z 
? |2 A= 

4 

\ 2 s| (\ ) g\ (10.5) 
�4 

the second moment, Z 
2 

4 
2 2? (|� ? |  A) A= (\ � h|i) s| (\ ) g\ = �| (10.6) 

�4 

the variance (second moment about the mean), etc. An important simple result is that if d is constant 

(not random), then 

hd|i = d ?  |  A  =  (10.7) 

Let i (|) be any function of random variable, |= It follows from the frequency function definition of 

the probability density, that Z 4 

? i  (|) A= i (\ ) s| (\ ) g\= (10.8) 
�4 

Eq. (10.7) is evidently a special case. Often it is useful to find the probability density of i from that of |= 

We suppose that the function is invertible so that | (i) is known. Then the line segment g\ is mapped 

into a line-segment gI> by the rule, 
g| (I )

g\ = 
gI 

gI> (10.9) 

we have immediately, 

sj (I ) gI = s| (\ (I ))
g| (I ) 
gI 

gI= (10.10) 

A special case would be i = d| + e> or | = (i � e) @d> g| (I ) @gI = 1@d> and thus 

sj (I ) = s| ((I � e) @d) @d= (10.11) 
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If this result is applied to (10.2), we have 

sj (I ) =  s
2

1 

�d�
h�(I �e�pd)2 @(2d2 � 2 ) (10.12) 

¡ ¢ 
which is J e � pd> d2�2 = Note that by choosing e = p@�> d = 1@�> that the new probability density is 

J (0> 1)–a standard form that is the one usually tabulated. 

If the derivative g|@gI should be zero or infinity, it implies that the mapping from | to i> or from 

i to | is not unique, and some care is needed (the di�erentials are not uniquely mapped). So consider 

J (0> 1) > 

s| (\ ) =  s1
2�
h�\ 2 @2 (10.13) 

and suppose � = |2 . Then clearly the probability that � is less than zero is zero, and both ±| map onto 

the same value of � indicated by, 

g| 1 1 
g� 2| 2

s
� 

(10.14)= = 

becoming infinite at � = 0= We can deduce therefore that, 

( 
1 s

2�
s
[ 
h�[@2> [  � 0 

s� ([) = = (10.15) 
0> [  ?  0 

multiplying by 2 to account for the negative \ contributions, too. Probability density (10.15) is known as 

“chi-square with one degree-of-freedom” usually written "2= “Degrees-of-freedom” will be defined later. 1 ® 
For future reference, note that if |2 = �2> still with zero mean, then Eq. (10.15) becomes 

( 
21 h�[@(2� 

s� ([) = �
s
2�
s
[ 

)> [  � 0 
(10.16) 

0> [  ?  0 

It can become confusing to keep track of mapping functions j (|) which are  not unique,  and a  

more systematic approach than used to find (10=15) is desirable. Introduce the “probability distribution 

function”, Z \ 

S| (\ ) =  s| (\ 0) g\ 0> (10.17) 
�4 

which has the properties, gS| @g\ � 0> S| (4) = 1> gS| @g\ = s| (\ ) = The interpretation of S| (\ ) is as 

the probability that | is less than or equal to \= 

Then for the above case, with � = |2 and | being Gaussian, 

n o ³ ´ ³ ´ 
S� ([) =  probability that 

s
[ � \ 

s
[ (10.18)= S|� � 

s
[ � S| � 

s
[ 

Z s[ Z �
s
[ 1 

h�\ 2@2= 
1 
h�\ 2 

g\ � @2g\= (10.19)s
2� 

s
2��4 �4 
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And, " s
[ 

# Z Z 
g g 1 \ 2 @2

�
s
[ 1 

h�\ 2@2s� ([) =  S� ([) =  h� g\ � g\ (10.20)s
2� 

s
2�g[ g[ �4 �4

� 
1 
2 [ ̧1 

h� > [  � 0> (10.21)= s
2�
s
[ 

identical to (10=15). “Leibniz’s rule” for di�erentiation of a variable upper bound of integration was used. 

This approach is quite general, as long as expressions such as (10.18) can be constructed. 

If there are two or more random variables, �l> l  = 1> 2=> ===p we can discuss their “joint” or “multi-

variate probability densities”, s�
1 �2 === (�1> �2> ===�p) ;  these are to be thought of as derived from the limits 

of a counting experiment in which �1 > �2 == are measured many times, and then binned by the values 

observed. The limit, as the number of such observations goes to infinity and as the bin size goes to zero, 

is supposed to exist. 

If a joint probability density factors, 

s�
1
�
2 === (�1> �2> ===�p) =  s�

1 
(�1) s�

2 
(�2 ) ===s�p 

(�p) (10.22) 

then the �l are said to be independent. 

Example. The general, p�dimensional joint Gaussian probability density is defined as, 

s�
1
�
2 === (�1> �2> ===�p) =  (10.23) µ ¶

1 
(� m)W 

R�1 (� m)� 
2 
� � = 

1 
1@2 

exp
(2�)

p@2 
|R|

Here � = [�1> ===�p]
W > 

;
AAAAAAA? 

<
AAAAAAA

? (�1 � p1) (�1 � p1) A ? (�1 � p1 ) (�2 � p2) A = = ? (�1 � p1) (�p � pp) A 

? (�2 � p2) (�1 � p1) A ? (�2 � p2 ) (�2 � p2) A = = ? (�2 � p2) (�p � pp) A @
AAAAAAA

R = = = = = =


= = = = =


? (�p � pp) (�1 � p1) A ?  (�p � pp) (�2 � p2) A = = ?  (�p � pp) (�p � pp) A

(10.24) 

AAAAAAA >= 

and |R| is the determinant. R can be written in a variety of ways including 
;
AAAAAAA? 

<
AAAAAAA@ 

�2 
1 �1�2�12 = = �1�p�1p 

�2�1�21 �2 
2 = = �2�p�2p 

= = = = = 

= = = = = 

�p�1�p1 �p�2�p2 = =  �2 
p 

(10.25)R = AAAAAAA
AAAAAAA>= 

¡ ¢ 
2where the �l are the corresponding variances about the mean, and the �lm �m � pm A�? (�l � pl)

@�l�m = are called correlations (discussed below).�ml 
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The important special case of two normal variables (“bivariate normal”) can be written as


s�
1 �2 
(�1>�2) =  (10.26) ( Ã 

1 � 
2 (1� �2) 

!) 

> 
2 2 

2) 2)1 � p1)
2 

� p � p(�1 2� (�1 1) (�2 (�2 � p
2+ 

1@2 
exp �

2) � ��1�22��1�2 (1� � 1 2 

where � is defined as � =? (�1 � p1) (� 2) A @�1�2, and taken up immediately below. Other2 � p

variants of (10.26) are possible. 

Exercise. Show that if all �lm = 0> l 6= m> that (10.23) reduces to the product of p-univariate normal 

distributions, hence showing that uncorrelated normal variates are also independent. 

The joint expectations about the means (moments about the means) are, for two variates, Z Z4 4 

= 1) (�2 � p2) s (�1>�2) g�1g�2 = (10.27)(�1 � p �
1 �2 

�4 �4 
? � 0 A2 

0 �1

0 
l 

0 
2 

0 > �1 are independent, it follows that We will use � to denote the variable with its mean removed. If � 
0 A2 

0 �1
0 A= 02 

0 A? � 1?� =? � = 
0 A2 

0 �1If ?� 6= 0> (suppressing the prime), then they are said to be “correlated” variables. This implies 

that a knowledge of one of them provides some predictive capacity for the other. We can use the idea of 

conditional probability, e.g., the probability that � takes on a particular value (or range of values) �22 

given that � = �1, which  we  write as  1 

s�
2 |�1 

(�2|�1) = (10.28) 

The textbooks all show that if �1> � are independent s�
2 |�1 

(�2|�1) =  s�
2 
(�2)> that is, knowledge of the 2 

value of �1 then contains no predictive information about � = More generally, suppose that we try to 2 

predict �2 from � in the form 1 

= d�1 + % (10.29)�2 

2 2where by definition % is independent of � = Forming ? �2�1 A= d ? �1 A + ? %�1 A= d ? �1 A> or1 

? �2�1 A 
d = > (10.30)2? �1 A 

which would vanish if ? �1�2 A= 0= Define the “correlation coe!cient” 

? �2�1 A 
� = = (10.31)2 2 1@2? �1 A

1@2? �2 A

It is straightforward to show that |�| � 1= (e.g., Priestley, p. 79) We have, 

? �2 A
1@22 

d = � > (10.32)2 1@2? �1 A

and it follows that the fraction of the variance in �2 which is correlated with (predictable by knowledge 

of �1) is just, 
2? �2 A �

2 (10.33) 
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(the “correlated power”), and the part of the variance which is not predictable, is ¡
? �2 

2 A 1 � 2
¢ 

(10.34)� 

which is the “uncorrelated power”. If �1> �2 are independent, they are uncorrelated; if they are uncorre-

lated, they need not be independent. 

Let there be p random variables �1> ===�p, and suppose we define p new variables �1===� which are p 

functions of the original variables. Conservation of area rules lead to the conclusion that if the joint 

probability density of the �l is s�1�2 ===�p 
(�1> �2> ===�p) > then the joint probability density for the �l is 

s�
1 �2 === (�1> �2> ===> �p) =  (10.35) 

C (�1> �2> ===> �p) 
s�

1 �2 ===�p 
(�1 (�1> ===> �p) > �2 (�1> ===> �p) > ===> �p (�1> ===> �p)) C (�1> ===> �p) 

where 
C (�1> �2> ===> �p) 

(10.36)
C (�1> ===>  �p) 

is the Jacobian of the transformation between the two sets of variables. 

In one dimension, the most common and useful transformations are of the form � = d� + e> d> e 

constant. In most cases, we work with canonical probability densities, such that e.g., the mean is zero, 

and the variance unity. The linear transformation, with Jacobian d or d�1 permits one to use these 

standard densities for random variables with arbitrary means and variances (see Eq. 10.12). All the 

ideas concerning correlation, predictability and independence are generalizable to more than two variables, 

through multiple and partial correlation studies, but these are left to the references. 

Example. Let {> | be two uncorrelated (and hence independent) Gaussian random variables of zero 

mean and variance �2= Define u = and ! = tan�1 (|@{). We seek the joint probability density 

for u> !> and their univariate probability densities. The joint probability density function is 

p
{2 + |2 

1 £ ¡
[2 + \ 2

¢ ¤
s{>| ([> \ ) =  exp @2� 2 = 

2�� 
� 

The Jacobian of the transformation from ({> |) to (u> !) is just u (Cartesian to polar coordinates). Then 

the joint probability density of the new variables is 

U £ ¤
exp U2@2� 2su>! (U> �) =  

2�� 
�

Integrating out the � variable over its entire range, �� ! �> (� doesn’t actually appear), we have � � 

immediately, 
U ¡

2
¢ 

su (U) =  exp U2@2� > (10.37) 
� 

�

and by inspection, it must be true that 
1 

s! (�) =  = 
2� 

Thus the phase has a uniform distribution �� ! �> and the amplitude and phase are uncorrelated � � 

with each other. Note that the probability density for u is called the “Rayleigh distribution”. 
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Exercise. Find the mean and variance of a Rayleigh distributed variable. 

For time series work, the most important p�dimensional probability density is the Gaussian or 

normal one (10.23). As the textbooks all show, the normal probability density has several important 

special properties. One of them is that it is completely specified by its mean, m> and covariance matrix, © ¡ ¢ ª 
R = ? (�l � pl) �m � pm A > and that if any pair is uncorrelated, they are also independent. 

Adding Independent Variates. Characteristic Functions 

A common problem is to determine the probability density of a sum of variates, e.g., � = �1 + �2 + ==== 

Obtaining the probability density is best done by undertaking a seeming digression. Consider an arbitrary 

random variable | with known probability density s| (\ ) > and the function j (|) =  hl|w= By (10.8), its 

expected value is Z 
w) =? hl|w A= 

4 

s| (\ ) hl\ w!| ( g\> (10.38) 
�4 

that is, up to the absence of a factor of 2� in the numerator of the exponential, the Fourier transform 

of s| (\ ) = This expected value is clearly a function of w (which should not be interpreted as time–its 

use is merely convention, as is the definition (10.38) without 2� where our own convention would put it), 

which we will denote !| (w) > and which is called the “characteristic function”. Now suppose we have two 

independent random variables |> {. Consider the characteristic function for z = { + |> 

!z (w) =? h
l({+|)w A=? hl{w A? hl|w A= 

Z 4 

hl[w s{ ([) g[ 
Z 4 

hl\ w s| (\ ) g\> (10.39) 
�4 �4 

by independence. So 

!z (w) = !{ (w)!| (w) > (10.40) 

that is to say, the product of two Fourier transforms. Because characteristic functions are defined as 

Fourier transforms, it follows that the inverse transform is, Z 
1 4 

sz (Z ) =  !z (w) h
�lZ w gw (10.41)

2� �4 

with the 1/2� being necessary because of its absence in the complex exponentials. But by the convolution 

theorem (or its very slight re-derivation with this changed convention), we must have Z 
sz (Z ) =  

4 

s{ (Z 0) s| (Z Z 0) gZ 0 = (10.42)�
�4 

The solution generalizes in an obvious way to the sum of an arbitrary number of independent variables. 

If s{ = s| , we have  ! = !| (w)
2 or for the sum of q such variables, !z (w) = !| (w)

q = z 

The characteristic function of the J (0> 1) Gaussian is readily found to be 

2 

! (w) = h�w @2> (10.43) 

2 2 wand thus the sum of two J (0> 1) variables would have a characteristic function, h�w @2 h�w 
2@2 = h� > 

whose inverse transform is found to be 

1 
h�[

2 

s ([) =  s
2�
s
2 

> (10.44) 
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that is to say another Gaussian of zero mean, but variance 2= It follows immediately from (10.43) that a ¡ ¢ 
sum of q - J (0> 1) variables is a new J (0> q) variable. If [ is instead the square of a J 0> �2 variable, 

then Eq. (10.44) becomes 

s ([) =  
1 

h�[
2 @�2 

(10.45)
2

s
2�
s
2�

One use of the characteristic function is in its relations to the moments of the corresponding proba-

bility density. Let us suppose ! (w) has a convergent Taylor series about w = 0 :  ¯ ¯ 
g! (w) ¯ w2 g2! (w) ¯ ¯ +! (w) = 1 + w 
gw ¯ 2! gw2 

¯ + ==== (10.46) ¯ 
w=0 w=0 

But from (10.38) we can evaluate the successive derivatives: ¯ 
g! (w) 
gw 

¯ ¯ ¯ 
w=0 

= 
Z 4 

�4 
l\ s| (\ ) g\ = lp> 

g2! (w) 
gw2 

¯ ¯ ¯ ¯ 
w=0 

= 
Z 4 

�4 
(l\ )2 s| (\ ) g\ = l2 p2> 

g3! (w) 
gw3 

¯ ¯ ¯ ¯ 
w=0 

= 
Z 4 

�4 
(l\ )3 s| (\ ) g\ = l3 p3> (10.47) 

g(q)! (w) 
gw(q) 

¯ ¯ ¯ ¯ 
w=0 

= 
Z 4 

�4 
(l\ )q s| (\ ) g\ = lqpq> 

Where pl are the successive moments of the probability density. Thus the successive moments determine 

the terms of the Taylor series expansion in (10.46), and hence the probability density itself. These results 

can be turned into a statement that a knowledge of all of the moments pl of a random process is usually 

equivalent to knowledge of the complete probability density. Conversely, knowledge of the characteristic 

function means that all of the moments are readily generated from its derivatives evaluated at w = 0= 

(There are probability densities whose moments are not finite, e.g., the Cauchy, and the argument fails 

for them.) 

The characteristic function generalizes to multivariate probability densities by introduction of Fourier 

transforms in several dimensions. Moment generation is achieved by using Taylor series in several dimen-

sions. 

Central Limit Theorems (CLT) 

Consider the sum of q independent variables, �l, 

� = �1 + ==== + �q (10.48) 

2all having the same mean, p1 and variance, �1, and with the same, but arbitrary, probability density, 

s1 (�) = Then 
2? �  A= p = qp1> ?  (� � p)2 

A= � 2 = q� = (10.49)1 

Define the normalized variable 

�̃ = 
� � p 

= �1 + === + ˜q> ˜˜ � �l = 
�l � p1 

� 
s
q�1 

= (10.50) 
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Suppose that the characteristic function of �l is !1 (w) = Then by the shift and scaling theorems of Fourier 

�l is ˜transforms, the characteristic function of ˜ !1 (w) =  !1 (w@ (�1
s
q)) exp (�lp1w@ (�1q)) = Hence the 

characteristic function for �̃ must be h i¡ ¡ ¢¢ q 
h�lp1 w@(�1

s
q)!1! (w) = ˜˜ !1 (w)

q 
= w@ �1

s
q = (10.51) 

Now !̃1 (w) is evidently the characteristic function of a random variable with zero mean and variance 1@q= 

Thus it must be true that (expanding in a Taylor Series), and using (10.46, 10.47), µ ¶
2 3 ¡ ¡ w

h�lp1w@(�1
s
q)!1 w@ �1

s
q 
¢¢ 
= 1  

w
+ R = (10.52)�

2q �1q3@2 

Thus to lowest order, (10=51) is µ ¶q2 
˜ w
! (w) =  1 = (10.53)�

2q 

Taking the limit as q goes to infinity, and invoking L’Hôpital’s rule on the log of ˜

˜

! (w) > we have 
2 

! (w) $ h�w @2 (10.54) 

Thus in this limit, the probability density for �̃ is the inverse tranform of (10.54) and is 

2

s̃ (�) =  s1
2�
h�� @2 (10.55) 

that is, J (0> 1) = Or, using the scaling and shift theorems, 

1 
h�(��qp1)

2 @(2
s
q�1)=s (�) =  s

q�1
s
2� 

(10.56) 

That is to say, we have shown that sums of large numbers of random variates have a tendency to become 

Gaussian, whether or not the underlying probability densities are themselves Gaussian. Result (10.56) 

is a special case of the so-called Central Limit Theorem (CLT), which can be proved under much more 

general circumstances. There are clearly restrictions that could prevent the limit (10.54) from being 

reached, but the CLT is often valid. Note the special case of a sample average, 

X1 q 

p̃ = �l> (10.57) 
q 
l=1 ¡ ¢ 

for which it follows immediately that p̃ will have a probability density J p> �2@q = 

Exercise. Suppose that s1 (�) = 1@2 {� (� � 1) + � (� + 1)} = Study the behavior of (10=51) as 

= What is the limiting probability density of the sum? Hint: use the binomial expansion onq $ 4 ¢¡
hlw + h�lw 

q
(1@2q) . 

Stationarity ¡ ¢ 
Consider a J 0> �2 time series {p such that Uqp =? {q{p A =  Given the zero mean, and specified 

R> we infer that the joint probability density s{1 {2 ==={n is (10.23) with m = 0= Let us suppose that Uqp 

depends only upon the time di�erence � = q � p> so that Uqp =? {q{q+� A= U� > independent of 

q= Such a time series is said to be “stationary in the wide sense”. If it is also true that all statistics, 

including all higher moments such as ? {q{p{s A, etc. only depend upon the time interval among the 
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time series elements, the time series is said to be “stationary” or “stationary in the strict sense”. It is 

another nice property of normal variates that if they are stationary in the wide-sense, they are stationary 

in the strict sense (most readily seen by observing that in (10.23) R has all of its parameters dependent 

solely upon � >  and not upon the absolute time. Hence, the probability density depends only upon � >  as 

does any statistical property derived from it. The theory for stationary time series is highly developed, 

and it is commonly assumed that one is dealing in nature with stationary processes, but one must be 

alert to the potential failure of the assumption. 

Sample Estimates 

In working with random variables, it is very important to distinguish between a theoretical value, 

e.g., the true average, written ? |  A>  or p> and the sample value, such as the sample average, written 

˜as either ? |  AQ or p> where the Q subscript indicates that it was based upon Q observations. We use 

a tilde, ~, to mark an estimate of a variable; estimates are themselves always random variables (e.g. p)˜

where the parameter itself, p is not. 

The usual sample average is 
Q X1 

p̃ =? |  AQ = |l = (10.58)
Q 
l=1 

A useful property of a sample mean (or estimator of the mean) is that it’s own expected value should be 

equal to the true value (this is not always true, and as will be seen, it is not always completely desirable.) 

For example, 
Q Q X 1 X1 

? p̃ A= ? |l A= p = p (10.59)
Q Q
l=1 l=1 

Such an estimator is said to be unbiased. (If we could average Q experimental values in P separate 

experiments, the average of the sample averages would be expected to be the true average.) 

It helps to know what is the scatter of an estimate about its true value, so consider the variance: " #2 " #2Q Q X 1 X12? ( ˜ A=? |l � p A=? (|l � p) A (10.60)p � p)
Q Q
l=1 l=1 

Q 21 X 
2 Q�2 �

= 
Q2 

? (|l � p) A= = (10.61)
Q2 Q

l=1 

so that the standard deviation of a sample mean about the true mean is �@
s
Q>  which is the famous 

“square-root of Q” rule.  

Now consider the sample variance: 

Q X1 
˜2 � = (|l p)

2 (10.62)˜
Q 

� 
l=1 

computed as the sample variance about the sample mean. A little algebra (left as an exercise), shows 

that, 

� 2 A= 
Q � 

� =6 � (10.63)? ˜
1 2 2 

Q 
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that is to say, the sample variance is biassed (although it is asymptotically unbiased as Q $ 4)= The 
bias is readily removed by re-defining 

Q X1 
˜2 � = ˜(|l p)

2 = (10.64)
1 

�
Q �

l=1 

The origin of the bias in this case is that in (10.62) the Q terms being averaged are not independent of 

each other; rather since the sum is taken over the values of |l p> the last term could be predicted from ˜�
the preceding Q � 1 of them by the requirement that the sample average actually is p= Consequently ˜

there are only Q � 1 independent terms (Q � 1 “degrees-of-freedom”) in the sum. 

Consistent Estimators 

Data are used to estimate various properties characterizing the statistical population from which the 

observation come. For example, the sample mean (10.58), is intended to be a good estimate of the true 

average p> from which the data were drawn. Many other properties are estimated, including the variance 

and the power density spectrum (defined below). Any estimate of a property has to be examined for at 

least two desirable properties: (1) that the average value of the estimate should be the true value (for 

an unbiased estimate), at least as the number of samples becomes large, and (2) that as the number of 

samples becomes large, the variance of the sample about its mean value (which one might hope is the true 

value) ought to go to zero. Estimators with these two properties are said to be “consistent”. Sometimes 

however, demanding an unbiased estimator greatly increases the variance of the estimate, and one may 

deliberately permit a bias if the variance can thereby be reduced. The sample mean was shown above to 

be unbiased, and by (10.60) its variance about the true value diminishes with Q ; hence it is a consistent 

estimator. One can also show that ˜2 in the form (10.64) is also a consistent estimator as is the original � 

definition, in the asymptotic limit. 

A useful idea in this context is the Chebyschev inequality. Let � be any random variable with true 

mean p, variance  �2 and second moment ? �2 A= p2 (that is not taken about the mean). Then Ã ! Z Z � Z � 4
2 p2 = 

4 

� s (�) g� + � 2 s (�) g� (10.65)� 
��4 �4 Ã ! Z � Z 

2 
� 4 

� + s (�) g� (10.66)�
��4 

2since � 2 is always greater than or equal to � in the integral. So we have the weak inequality Z 
p2 

s (�) g� 2 > (10.67) 
|�|A� 

� 
� 

which we can read as “the probability that |�| A �  is less than or equal to p2@�
2 =” If we replace � by 

� �p> and then p2 = �2> we have 
2�

prob {|� �p| � �} � (10.68)2 � 
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where “prob” denotes “the probability that”. The sense of the inequality can be inverted to 

2�
prob {|� �p| � �} � 1 > (10.69)2� 

� 

which is the Chebyschev inequality. These inequalities in turn lead to the important idea of “conver-

gence in probability”. � (where n is a parameter) is said to converge in probability to f> as n $ 4> ifn 

prob{|�n � f| � �} $ 0= This is convergence that is “almost surely”, written a.s., and di�ers from ordi-

nary mathematical convergence in being a statement that deviation from the asymptotic value becomes 

extremely improbable, but not impossible, in the limit. 

Let us apply the Chebyschev inequality to the sample mean (10.58), whose variance is �2@Q= Then 

by (10.69), 
2�

prob {| ̃
Q�2 (10.70)p �p| � �} � 

Thus as Q $4 (corresponding to the parameter n above), the probability that the sample mean di�ers 

from the true mean by any amount � can be made arbitrarily small. It is thus a consistent estimator. 

For the spectral estimators, etc. used below, one needs formally to show convergence in probability to 

the true values, but this demonstration is normally left to the reader. 

Confidence Intervals 

Consider the sample mean p̃> whose own mean is p and whose variance is �2@Q= If it is derived from ¡ ¢ 
{l which are normal independent, identically distributed (i.i.d) variates, then p̃ is J p> �2@Q = Let us 

make a table of the canonical J (0> 1) variable: 

� (�@2) prob[�� � [ � �] � 

1.0 0.683 0.317 

1.96 0.950 0.050 

2.00 0.954 0.046 

2.58 0.990 0.010 

3.00 0.997 0.003 
Table Caption. (Taken from Jenkins and Watts, 1968, p. 71). Here � is  the value, symmetric about  the  

mean of 0, between which the probability is 1 � that a random sample [ would lie. � is the fraction �
of the value which would lie outside the range ±�. Thus  a  random  sample  [ would have a probability 

of 0=95 = 1 � of lying in the range ±1=96= In many trials, one would expect 5% of the values to lie, by �
chance, outside this range. The normal density is symmetric about the mean, and which is not true for 

more general densities. 

Then ½ ¾ 
˜

prob �� (�@2) � 
p �p 

�@
s
Q 
� � (�@2) = 1  � (10.71)�
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Figure 9. Probability density for "2 
� , � = 1> ===> 4= Note growth of long positive tail as � 

increases. p = �> and �2 = 2�= For large �, "2 
� approaches a normal probability density. 

The cases � = 1> 2 are exceptional in having their maximum at 0. 

can be read from  the  table for  any given  �= We can re-arrange (10.71) to: ½ ¾ 
� (�@2) � � (�@2) � 

prob p � s
Q 

˜ s
Q 

= 1  � (10.72)� p � p + �

Alternatively, n ³ ´ ³ ´ o 
p � �@

s
Q � (�@2) � p � p + �@

s
Q � (�@2) = 1  �= (10.73)prob ˜ ˜ �

˜This  last  form  is  the most useful one:  suppose to be specific  that  � = =05= Then for a sample mean p 

obtained from a random variate having variance �2> the probability is 0.95 that the true value, p> lies in 

the interval p̃ ± �� (=05@2) = This interval is said to be a 1 �% confidence interval (here a 95% confidence �
interval). It clearly diminishes to zero as Q $4= 

Consider now a non-symmetric probability density. One that proves very useful to us is the so-called 

"2 (chi-square with � degrees-of-freedom),� 

1 
s� ([ ) =  [�@2�1 exp (�[@2) > [  A  0 (10.74)

2�@2� (�@2) 

= 0> [  � 0 P� 2whose mean is �> and variance is 2�= (This probability density describes a variable { = �l > where the 1 

�l are independent, J (0> 1) =) It is plotted  in  fig.  9  for  1 � 4= For present purposes, we note only � � 

that the probability density is non-symmetric about its mean, having a long tail toward high positive 

values. Consider the tail at the low end containing a fraction d@2 of the values from a set of random 
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trials, and denote the value [ below which this tail falls as � (�@2) = Correspondingly, the tail at the � 

high end occupying �@2 of the trial results is to lie to the right of [ = �+ (�@2) = Suppose now that we 

have a variable � which has been estimated as �̃ and which is thought to be distributed in "2 
� with mean 

� and variance 2�= Then 

n o 
˜prob � (�@2) � � �+ (�@2) = 1  �= (10.75)� � � 

To employ this in a practical example, consider the sample variance ˜2 (10.64) constructed from Q� ¡ ¢ 
idenditically distributed variables, which are J p> �2 . It is easy to show (sketched out below) that 

� �(Q � 1)˜2@�2 will be a "2 variable with � = Q � 1 (it’s expected value is Q � 1> and its variance is 
22(Q � 1))= Then setting �̃ = (Q � 1)�̃ @�2 in (10.75) and rearranging, we obtain 

½ ¾ 

prob 
˜2 (Q � 1) 2 � (Q � 1)� ˜2 

� = 1  � (10.76) 
�+ (�@2) 

� � 
� (�@2) 

� 
� 

and the true variance would like between these two (unequal) bounds about ˜2 = Because � ? �+, the  � � 

upper limit of the �% confidence limit will be further above �2 than the lower limit will be below (for 

� A  2). �± are tabulated in various statistics books or can be calculated from various software packages. 

(It is sometimes useful to have the "2 
� distribution for the sum, �> of squared zero-mean Gaussian variates 

of variance �2> or: 

�@2 1¶ � ¡ ¡
s� ([) =  

1 
µ 
[ 
2 

exp �[@ 2� 2
¢¢ 
> [  � 0 (10.77) 

�22�@2� (�@2) �

= 0> [  ?  0=) 

In examining the form (10.73), one might object that �2 is not likely to be known. This led Gosset 

(writing under the famous pseudonym of “Student”) to show that he could find the probability density 

of the variable WQ�1 = 
s
Q ( ˜ � and which is not dependent upon �= The resulting probability p � p) @˜

density is called Student’s w distribution. We leave its discussion to the references (see, e.g., Cramér, �
1946, Section 18.2). 

White Noise 

A white noise process is a stationary time series (sequence) with a uniform in time variance, zero 

mean, and in which knowledge of the value at one time �p carries no information about its value at any 

other time, including the immediately preceding and following times. That is, ? �p�p0 A= �2 �pp0 = A � 

sequence of coin flips is such a process. The general terminology is that these are independent identically 

distributed variables (or an i.i.d). Often, we will assume that the values are normally distributed, as in 

(10.2) with p = 0= 



46  1.  F  R  E  Q  UENCY  DO  M  A  IN  FO  RM  ULATIO  N  

White noise is the simplest possible stochastic process. Let us therefore consider its Fourier transform 

or series using the real form (6.29-6.31). The coe!cients are 

¶1 µX2 
Q �

2�ns�w 
dn = �s cos > n  = 0> ===> Q@2> (10.78)

Q W 
s=0 

1 µ ¶X2 
Q �

2�ns�w 
en = �s sin > n  = 1> ===> Q@2 1= (10.79)

Q W 
� 

s=0 

It follows immediately that 

? dn A=? en A= 0  ¶1 µ ¶ 1 µXX 2�ns�w 
Q �

2�ns�w 
? d2 A=

4 
Q �

n Q2 
? �s cos �u cos A 

W W 
s=0 u=0 µ ¶ µ ¶

4 XX  2�ns�w 2�ns�w 
= ? �s�u A cos cos 
Q2 W W 

= 
4 
Q2 

XX
�su � 2 

� cos 

µ
2�ns�w 
W 

¶
cos 

µ
2�ns�w 
W 

¶ 

= 
2 
Q 
� 2 
� (10.80) 

by (6.30). Similarly, 

? e2 
n A= 

2 
Q 
� 2 
� (10.81) 

? dqen A= 0  (10.82) 

? dn dq A=? en eq A= 
2 
Q 
�nq� 2 

� > (10.83) 

omitting the zero and Nyquist frequencies. For these frequencies, 

? d2 
0 A=? d

2 
Q@2 A= 

4 
Q 
= (10.84) 

To say this in words: the Fourier transform of a white noise process has zero mean and is uncorrelated 

from one frequency to another; the sine and cosine amplitudes are uncorrelated with each other at all 

frequencies, and the variance of the sine and cosine components is uniform with frequency. If the �p 

are normally distributed, J 0> �2 then it follows immediately that dn > en are also normally distributed � ¡ ¢ 
¡ ¢ 

J 0> 2�2@Q = The Parseval relationship requires � 

1 
d2 1 

Q@2 1 X X� ¡ d21 
Q �

2 d2 2 
¢ Q@20 � = + + e + > (10.85)p qQ p 4 2 4 

p=0 p=1 

here including the mean and Nyquist frequencies. (The true mean is zero, but the actual sample mean 

will not be, although it is often set to zero for numerical reasons. Doing so, means that only Q � 1 of 
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the terms on the left in (10.85) would then be independent.) To check this last equation, we can see if it 

holds on the average: 

0 A 1 
� ¡ ? d

2@21
? ? d2 Q@2 1 X X A 

+ 
1 
Q �

? �2 A= ? d2 + e 2 
¢ 
A + Q@2 

> or,q qQ p 4 2 4 
p=0 q=1 

Q@2 1 µ ¶ µ ¶
2 X 2 2 2 

2 ? �� 1 
�

2 2 2 �� �� 1 Q 
1

4 
� 2 + 

�� 2 � = + + � + = + = � > (10.86)� Q �Q 2 Q Q � Q Q 2 2 
� 

Q � 
q=1 

as required. 

As the record length grows, the number Q> of Fourier coe!cients grows linearly, but the mean square 
2 2power (1@Q) 

PQ �1 �p in (10.85) remains fixed, independent of Q= Thus the expected value of any d2 +ep=0 q q 

is reduced by the factor 1@Q to compensate for their growing population. 

If one computes the phase of the Fourier series as 

! = tan�1 (eq@dq) (10.87)q 

it is readily seen that !q has a uniform probability density 

1 
s! (�) =  = (10.88)

2� 

(To see this algebraically, we recognize that if �p are J 0> �2 > dq> eq are uncorrelated Gaussian variables � ¡ ¢ 
¡ ¢ 

distributed J 0> �2@2Q and hence they are also independent. Because they are independent, their joint � 

probability density is the product of their identical probability densities: 

sdq >eq (�1>�2) =  sdq (�1) seq (�2) =  (10.89) 

1 ¡ ¡ ¡ ¡
2 2 exp �1@ � 2@2Q 

¢¢ 
exp �2@ � 2@2Q 

¢¢ 
2 � �2� (�� @2Q) 

� �

We can thus conclude that there is no information content in the phase of a white noise process. What 
2then is the probability density for d2 > e2 and d2 + eq? The probability densities for the first two must be q q q 

identical, and are thus the densities for the square of a normal variate with 0 mean and variance �2@2Q= ³ ´ � 
= dq@ �� @

s
2QLet us use normalized variables so that they have unit variance, i.e., consider d0 q > e0 q = ³ ´ 

�� @
s
2Qeq@ each of which will be J(0> 1)= Using the rule for change of variable we find that, 

[�1@2 

([) =  s ([) =  exp (�[@2) (10.90)2 
q 

2 
q 
sd0 e0

2which is again "1 (recall Eq. (10.15)). Invoking the machinery for sums of independent variables, we find 
02 02that the probability density for uq = d 

0 2 + e isq q 

s
2� 

2 
q 
su0

1 
([) =  exp (�[@2) (10.91)

2 
2which is called "2 (chi-square with two-degrees-of-freedom) and whose mean is 2 and variance is 4 (one 

has to do the integral; see Eq. 10.74). 
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Figure 10. (a) 2048 numbers from a pseudo-random generator. These approximate 

a white noise process. (b) Linear scale periodogram of the values in (a). (c) Semi-
2

logarithmic scale plot of v |�q| in which the multiplication by v compensates for the 

logarithmic squeezing of the frequencies at the high end. Notice the visual impression 

that energy increases with increasing frequency–an artifact of the plotting method. (d) 
2 2

2 variate. The 30 bin histogram of the values |�q| which should and do approximate a "

mean (dashed) and median (solid) values are shown. There is evidently a much greater 

chance of a value far larger than the mean to occur than there is for a much smaller one 

to occur, owing to the limiting value at zero. But more smaller values below the mean 
2
2 =occur than above the mean of "

Exercise. Using the results of the exercise on P. 37, find the probability density for the amplitude 

and phase of the Fourier coe!cients. 
2 
q 

2
2 

q, their  sum  of  squares,  u

along with the theoretical " (scaling the variables by �� @2Q to 

2 
q 

2 
qFig. 10 shows the Fourier coe!cients of a pseudo-random � d + e= , 

2 
qand the histogram of occurrences of u

restore the original variance). The true mean would be 

2 2� �2 � �? u A= 2  (10.92)= q 2Q Q 

2 
qand the variance of u would be 

¶2 22 �2 
�

¶¢2 
A A= 2

µ 

=

µ
�¡

? 2 2 �? u (10.93)u = q� q Q Q

That is, the variance is proportional to the square of the of the power density. 

2 
q = d

2 
q + e

2 
q = |�q|Definition. u is called the “periodogram” of a random process. 2 
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Remark 1. There is a common, naive, assertion about the results of Fourier transforming a stochastic 

process. Basically, it says that “obviously, the low frequency Fourier components are less-well determined 

than are the high frequency ones, because many more oscillations of the high frequency components exist 

in the record, whereas for the first record harmonic, v1 = 1@W , only one cycle is covered by the data.” 

Unfortunately this seemingly obvious conclusion is false. Consider that every Fourier harmonic, vq, 

di�ers from its two neighboring harmonics, vq�1>vq+1 by exactly one cycle per record length. All of the 

data are required to determine the Fourier amplitudes of these neighbors, separating them by consideration 

of their di�erence by one cycle in the record. v1 di�ers exactly in the same way from v0 (the record mean), 

and v2. Thus precisely the same amount of information is available about v1 as about any other vq = This 

statement is consistent with (10.93): the variance of the periodogram values is independent of q= 

It appears from (10.93) that the variance of the estimates diminishes with Q= But the ratio of the 

variance to the estimate itself, is independent of Q= That is, because the number of Fourier coe!cients in-

creases with Q> each has a diminishing proportional contribution to the constant record variance (power), 

and the variability of the estimate as a fraction of the true expected value remains unchanged even as 

the record length goes to infinity. This behavior confused scientists for years. 




