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12. The Blackman-Tukey Method 

Prior to the advent of the FFT and fast computers, power density spectral estimation was almost 

never done as described in the last section. Rather the onerous computational load led scientists, as far 

as possible, to reduce the number of calculations required. The so-called Blackman-Tukey method, which 

became the de facto standard, begins with a purely theoretical idea. Let ? {q A= 0= Define the “sample 

autocovariance”, 
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where as � grows, the number of terms in the sum necessarily diminishes. From the discrete convolution 

theorem, it follows that, 

³ ´ Q�1 X 1 2 2˜ ˜F U (� ) = U (� ) exp (�2�lv� ) =  |{̂ (v)| = Q |�q| (12.2)
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Then the desired power density is, 
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? Q  |�q| A= � (v) =  ? Ũ (� ) A exp (�2�lv� ) = (12.3) 
�= �(Q�1) 

Consider 
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U (� ) A= ? {p{p+� A> � = 0> ±1> ±2> ===> ±Q � 1 
Q 

p=0 
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= U (� ) > (12.4)
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by definition of U (� ) = First letting Q $4> and then � $4> we have the Wiener-Khinchin theorem: 

X X4 4
� (v) =  U (� ) exp (�2�lv� ) =  U (� ) cos (2�v� ) (12.5) 

�= �=�4 �4 

the power density spectrum of a stochastic process is the Fourier transform of the autocovariance. This 

relationship is an extremely important theoretical one. (One of the main mathematical issues of time 

series analysis is that the limit as W = Q �w $4 of the Fourier transform or series, µ ¶
1 
Z W@2 2�lqw 

�q = { (w) exp gw> (12.6)
WW �W@2 

whether an integral or sum does not exist (does not converge) because of the stochastic behavior of { (w), 

but the Fourier transform of the autocovariance (which is not random) does exist.).  It is important  

to recognize that unlike the definition of “power spectrum” used above for non-random (deterministic) 

functions, an expected value operation is an essential ingredient when discussing stochastic processes. 
˜It is very tempting (and many people succumbed) to assert that U (� ) $ U (� ) as Q becomes very 

large. The idea is plausible because (12=1) looks just like an average. The problem is that no matter 

how large Q becomes, (12.2) requires the Fourier transform of the entire sample autocovariance. As the 
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lag � $ Q> the number of terms in the average (12.1) diminishes until the last lag has only a single 

value in it–a very poor average. While the lag 0 term may have thousands of terms in the average, 

the last term has only one. The Fourier transform of the sample autocovariance includes these very 

poorly determined sample covariances; indeed we know from (12.2) that the statistical behavior of the 

result must be exactly that of the periodogram–it is unstable (inconsistent) as an estimator because its 

variance does not diminish with Q= 

The origin of this instability is directly derived from the poorly estimated large-lag sample covari-
4ances. The Blackman-Tukey method does two things at once: it reduces the variance of the periodogram, 

and minimizes the number of elements which must be Fourier transformed. This is a bit confusing be-
˜cause the two goals are quite di�erent. Once one identifies the large lag � values of U (�) as the source 

of the statistical instability, the remedy is clear: get rid of them. One multiplies Ũ (�) by a “window” z� 

and Fourier transforms the result 
� =Q �1 X 

� ˜�̃ (v) =  U (�)z� exp (�2�lv�) (12.8) 
� = �(Q �1) 

By the convolution theorem, this is just ³ ´ 
� ˜�̃ (v) =  F U (�) F (z� ) (12.9)� 

If z� is such that its Fourier transform is a local averaging operator, then (12.9) is exactly what we seek, 

a local average of the periodogram. If we can select z� so that it simultaneously has this property, and 

so that it actually vanishes for |� | A P>  then the Fourier transform in (12.8) is reduced from being taken 

over Q -terms to over P ??  Q>  that is, 

� =P 1 X�
� ˜�̃ (v) =  U (�)z� exp (�2�lv�) = (12.10) 

� = �(P �1) 

The Blackman-Tukey estimate is based upon (12.9, and 12.10) and the choice of suitable window 

weights z� = A large literature grew up devoted to the window choice. Again, one trades bias against 

variance through the value P> which one prefers greatly to minimize. The method is now obsolete because 

the ability to generate the Fourier coe!cients directly permits much greater control over the result. The 

bias discussion of the Blackman-Tukey method is particularly tricky, as is the determination of �= Use of 

the method should be avoided except under those exceptional circumstances when for some reason only 

Some investigators made the situation much worse by the following plausible argument. For finite �>  the number of 

terms in (12.1) is actually not Q> but Q 3 |� | ; =they argued therefore, that the proper way to calculate U (�) was actually 

X1 
Q 313|� | 

Ũ1 (�) =  {w{w+� (12.7) 
Q 3 |� | 

q=0 

˜which would be (correctly) an unbiassed estimator of U (�) = They then Fourier transformed U1 (�) instead of U (�) = But 

this makes the situation much worse: by using (12.7) one gives greatest weight to the least well-determined components in 

the Fourier analysis. One has traded a reduction in bias for a vastly increased variance, in this case, a very poor choice 

U A>?  ˜indeed. (Bias does not enter if {w is white noise, as all terms of both ? ˜ U1 A vanish except for � = 0=) 
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˜ ˜U (�) is known. (For large data sets, it is actually computationally more e!cient to compute U (�) > 
˜ ˜should one wish it, by first forming �� (v) using FFT methods, and then obtaining U (�) as its inverse 

Fourier transform.) 




