7. Identities and Difference Equations

Z-transform analogues exist for all of the theorems of ordinary Fourier transforms.

Exercise. Demonstrate:

The shift theorem: $\mathcal{Z}(x_{m-q}) = z^q \hat{x}(z)$.

The differentiation theorem: $\mathcal{Z}(x_m - x_{m-1}) = (1-z)\hat{x}(z)$. Discuss the influence of a difference operation like this has on the frequency content of $\hat{x}(s)$.

The time-reversal theorem: $\mathcal{Z}(x_{-m}) = \hat{x}(1/z)$.

These and related relationships render it simple to solve many difference equations. Consider the difference equation

$$x_{m+1} - ax_m + bx_{m-1} = p_m \tag{7.1}$$

Continued on next page...

1. FREQUENCY DOMAIN FORMULATION

where p_m is a known sequence and a, b are constant. To solve (7.1), take the z-transform of both sides, using the shift theorem:

$$\frac{1}{z}\hat{x}(z) - a\hat{x}(z) + bz\hat{x}(z) = \hat{p}(z)$$
(7.2)

and solving,

$$\hat{x}_{p}(z) = \frac{\hat{p}(z)}{(1/z - a + bz)}.$$
(7.3)

If $p_m = 0, m < 0$ (making p_m causal), then the solution (7.3) is both causal and stable only if the zeros of (1/z - a + z) lie outside |z| = 1.

Exercise. Find the sequence corresponding to (7.3).

Eq. (7.3) is the particular solution to the difference equation. A second order difference equation in general requires two boundary or initial conditions. Suppose x_0, x_1 are given. Then in general we need a homogeneous solution to add to (7.3) to satisfy the two conditions. To find a homogeneous solution, take $\hat{x}_h(z) = Ac^m$ where A, c are constants. The requirement that $\hat{x}_h(z)$ be a solution to the homogeneous difference equation is evidently $c^{m+1} - ac^m + bc^{m-1} = 0$ or, $c - a + bc^{-1} = 0$, which has two roots, c_{\pm} . Thus the general solution is

$$x_m = \mathcal{Z}^{-1}\left(\hat{x}_p\left(z\right)\right) + A_+ c_+^m + A_- c_-^m \tag{7.4}$$

where the two constants A_{\pm} are available to satisfy the two initial conditions. Notice that the roots c_{\pm} determine also the character of (7.3). This is a large subject, left at this point to the references.³

We should note that Box, Jenkins and Reisel (1994) solve similar equations without using z-transforms. They instead define forward and backwards difference operators, e.g., $\mathcal{B}(x_m) = x_{m-1}, \mathcal{F}(x_m) = x_{m+1}$. It is readily shown that these operators obey the same algebraic rules as do the z-transform, and hence the two approaches are equivalent.

Exercise. Evaluate $(1 - \alpha \mathcal{B})^{-1} x_m$ with $|\alpha| < 1$.

	/
	/
1	<u>ر</u>

/

³The procedure of finding a particular and a homogeneous solution to the difference equation is wholly analogous to the treatment of differential equations with constant coefficients.