7. Identities and Difference Equations

Z-transform analogues exist for all of the theorems of ordinary Fourier transforms.

Exercise. Demonstrate:

The shift theorem: $\mathcal{Z}\left(x_{m-q}\right)=z^{q} \hat{x}(z)$.
The differentiation theorem: $\mathcal{Z}\left(x_{m}-x_{m-1}\right)=(1-z) \hat{x}(z)$. Discuss the influence of a difference operation like this has on the frequency content of $\hat{x}(s)$.

The time-reversal theorem: $\mathcal{Z}\left(x_{-m}\right)=\hat{x}(1 / z)$.
These and related relationships render it simple to solve many difference equations. Consider the difference equation

$$
\begin{equation*}
x_{m+1}-a x_{m}+b x_{m-1}=p_{m} \tag{7.1}
\end{equation*}
$$

Continued on next page...
where p_{m} is a known sequence and a, b are constant. To solve (7.1), take the z-transform of both sides, using the shift theorem:

$$
\begin{equation*}
\frac{1}{z} \hat{x}(z)-a \hat{x}(z)+b z \hat{x}(z)=\hat{p}(z) \tag{7.2}
\end{equation*}
$$

and solving,

$$
\begin{equation*}
\hat{x}_{p}(z)=\frac{\hat{p}(z)}{(1 / z-a+b z)} . \tag{7.3}
\end{equation*}
$$

If $p_{m}=0, m<0$ (making p_{m} causal), then the solution (7.3) is both causal and stable only if the zeros of $(1 / z-a+z)$ lie outside $|z|=1$.

Exercise. Find the sequence corresponding to (7.3).

Eq. (7.3) is the particular solution to the difference equation. A second order difference equation in general requires two boundary or initial conditions. Suppose x_{0}, x_{1} are given. Then in general we need a homogeneous solution to add to (7.3) to satisfy the two conditions. To find a homogeneous solution, take $\hat{x}_{h}(z)=A c^{m}$ where A, c are constants. The requirement that $\hat{x}_{h}(z)$ be a solution to the homogeneous difference equation is evidently $c^{m+1}-a c^{m}+b c^{m-1}=0$ or, $c-a+b c^{-1}=0$, which has two roots, $c_{ \pm}$. Thus the general solution is

$$
\begin{equation*}
x_{m}=\mathcal{Z}^{-1}\left(\hat{x}_{p}(z)\right)+A_{+} c_{+}^{m}+A_{-} c_{-}^{m} \tag{7.4}
\end{equation*}
$$

where the two constants $A_{ \pm}$are available to satisfy the two initial conditions. Notice that the roots $c_{ \pm}$ determine also the character of (7.3). This is a large subject, left at this point to the references. ${ }^{3}$

We should note that Box, Jenkins and Reisel (1994) solve similar equations without using z-transforms. They instead define forward and backwards difference operators, e.g., $\mathcal{B}\left(x_{m}\right)=x_{m-1}, \mathcal{F}\left(x_{m}\right)=x_{m+1}$. It is readily shown that these operators obey the same algebraic rules as do the z-transform, and hence the two approaches are equivalent.

Exercise. Evaluate $(1-\alpha \mathcal{B})^{-1} x_{m}$ with $|\alpha|<1$.

[^0]
[^0]: ${ }^{3}$ The procedure of finding a particular and a homogeneous solution to the difference equation is wholly analogous to the treatment of differential equations with constant coefficients.

