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Lecture 10 


Advection in two dimensions


6.1	 Stability of multiple terms (in multiple 
dimensions) 

When we analyzed the stability of time-stepping methods we tended to con
sider either a single damping term or a single oscillatory term. Since the 
forward method is easy to analyze and stable for damping terms, consider 
the two-dimensional equation: 

�t∂ = −κ∂ + ��xx∂ + ��yy∂ 

The second order space, forward in time difference equation is: 

�n∂n+1/2 = −κ + �ii∂ +
�y2 

�jj∂ 
�x2 

e
As before, to do the stability analysis, we substitute in a solution of the form 

i(kx−�t)−�t . The response function for the spatial operators are: 

k�x 2R(�i�i∂) = (2i sin )2 = −4sk2 
2R(�j �j∂) = (2i sin 

l�y 
)2 = −4sl2 

where sk = sin k�x and sl = sin l�y are convenient short-hand. The amplifi
2	 2 

cation equation then is: 

4��t 2 4��t 2 e −��t = 1 − �tκ − sk − 
�y2 

sl�x2 
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so that for stability we must satisfy: 

4��t 4��t 
�tκ + + � 1 

�y2�x2 

Each term contributes to the numerical stability additively. The consequence 
is that two-dimensional problems typically have a smaller stability thresh
old than one-dimensional problems and similarly three-dimensional problems 
more so. This effect is generally true when ever the terms are treated uni
formly by the time-stepping scheme. Schemes that treat some terms differ
ently (say implicitly) can avoid this additive effect of stability criteria. In the 
following sections we’ll see how to avoid this effect for the forward advection 
schemes. 

6.2 First order upwind in two dimensions 

Let’s apply the FTUS scheme to advection in two dimensions by constant 
flow (u, v). Without any other considerations the resulting scheme is: 

1 
∂
� � 
 v � 
 

n+1 

 u

∂n + ∂n 
i,j−1 = 0 (6.1)

�t i,ji,j − ∂n + i,j − ∂i
n 
−1,j �y i,j − ∂n 

�x 

where we have assumed the flow, u and v, to be in the positive x and y 
directions respectively. 

A stability analysis shows the scheme to be conditionally stable: 

u�t v�t u�t v�t 
� 0 and � 0 and + � 1 

�x �y �x �y 

but notice that the condition is on sum of the Courant number in each 
direction. 

The modified equation corresponding to 6.1 can be found by first re-
expressing the scheme in terms of centered differences: 

1 n 1 u i 1 v 
(�n∂ + �nn∂) + (�i∂ − �ii∂) + (�j ∂

j 
− 

1 
�jj ∂) = 0 

�t 2 �x 2 �y 2 

which is a second order approximation of 

u�x u�t v�y v�t 
�t∂ + u�x∂ + v�y ∂ = (1 − )�xx∂ + (1 − )�yy ∂ − uv�t�xy ∂ 

2 �x 2 �y 
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The last term is an an-isotropic term; it looks different along different direc
tions. In fact, it leads to diffusion in the direction tangential to the flow and 
anti-diffusion in the direction of flow. The effect of this term leads to the 
shape distortion which is apparent in the solution shown in Fig. 6.1a. 

Fig. 6.2a visualizes the fluxes implied by the two-dimensional FTUS 
scheme. Each flux is normal to a coordinate line (cell boundary) and sweeps 
out a length �tu or �tv so that the area (shaded regions) transported 
through the cell wall is �tu�y and �tv�x for the x and y directions re
spectively. The western and southern fluxes are self explanatory. However, 
the northern and eastern flux appear to overlap in the area that is swept out 
(indicated by shaded region 3). The scheme is conservative because the sum 
of regions 1 and 2 minus the double counted region 3 is equal to �x�y. How
ever, the lack of dependence on the cell to the south-west mean the scheme 
can not represent the characteristic properties of diagonal flow. 

6.3 Corner transport upstream 

The CTU algorithm can be derived by various means but the most intu
itive is based on the same principles as used in the finite volume method. 
Consider the Galilean translation of the fluid parcels resulting from constant 
flows (u, v). Following the location of the grid at time level n + 1 back in 
time along the characteristics we arrive at the picture indicated in Fig. 6.2b 
where the translated cell overlaps with the three upstream cells. The area of 
intersections represent the weights to attribute to the tracer on the original 
grid but at the previous time-level, n. The resulting scheme is then: 

∂i,j i,j + Cu(1 − Cv )∂i
n 
−1,j + (1 − Cu)Cv ∂

nn+1 = (1 − Cu)(1 − Cv )∂
n 

i,j−1 + CuCv ∂i
n 
−1,j−1 

where Cu = u�t/�x and Cu = u�t/�x are the Courant numbers in the x 
and y directions. Stability is conditional: 

0 � Cu � 1 and 0 � Cv � 1 

which is the same as satisfying the stability of FTUS in each direction allows 
a much longer time-step than using the two-dimensional FTUS. 

The CTU method can be written flux form with a contribution to the x 
and y fluxes from the corners. This is awkward to visualize and introduces 
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Figure 6.1: Advection by a uniform diagonal flow (u = v) using a) the FTUS 
applied in each direction, b) the two dimensional upstream corner transport 
method, c) the multi-dimensional second order Van Leer flux limiter and d) 
the true solution. 
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Figure 6.2: A schematic of the volumes swept out by the fluxes in a) 
scheme 6.1, the simple two-dimensional upwind method, and b) the corner 
transport method. 

wider stencils for each flux than the simple FTUS flux. Another way to write 
the CTU method is via an intermediate step: 

∂� = (1 − Cu)∂
n ∂n 

i,j i,j + Cu i−1,j 

∂n+1 = (1 − Cv )∂
� ∂� 

i,j i,j + Cv i,j−1 

which is exactly equivalent to previous form. This last form can be inter
preted as applying FTUS successively in each direction, using the latest val
ues at each stage. We can see here why the stability depends simply on the 
stability in each direction since both stages must be independently stable. 

6.4 Multi-dimensional algorithm 

As a rule, the forward advection methods (Lax-Wendroff, flux limiters, ...) 
will all need a similar treatment to that that rendered the FTUS into the 
CTU method. A general approach is as follows: 

�t �t 
∂n+1/m = ∂n 

− �iFx(u, ∂n) + ∂n �iu 
�x �x 

�t �t 
∂n+2/m = ∂n+1/m 

− �j Fy (v, ∂n+1/m) + ∂n �j u 
�y �y 
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. . . 
� � 

∂n+1 = ∂n+m/m + ∂n �t 
�x 

�iu + 
�t 
�y 

�iv + . . . 

where Fx(u, ∂) is a general form of the advective flux. This scheme reproduces 
the CTU method for constant flow if Fx is the upwind flux. The last term 
in each equation account for the “apparent” divergence of the flow when 
treating each direction separately. This multi-dimensional method is a form 
of operator splitting. 

We should emphasize that it is not as necessary to consider multi-dimensional 
truncation errors when the time-difference is centered in time (e.g. using leap
frog) since the erroneous cross terms that appeared in the two-dimensional 
FTUS scheme appeared from the O(�t) truncation term of the forward time 
difference. Such terms do appear in the modified equations of centered time 
difference but don’t generally take a diffusive form and can only appear at 
order O(�t2). 


