
1 Introduction

We describe here the quasi-geostrophic ocean model that was developed by John Marshall,
George Nurser and Roger Brugge - see Marshall, J., A.J.G. Nurser and R. Brugge: (1988) On
the time-averaged °ow of quasi-geostrophic wind-driven gyres, J. Geophys. Res. (Oceans),
93, 15427-15436. It integrates a prognostic (potential vorticity) equation for each layer in
a closed basin with (linearized) bottom topography and can be driven by both wind and
buoyancy forces. The model can be integrated in complex geometries; basin and channel
versions are available. Both wind and buoyancy driven °ows can be studied, but within the
con¯nes of quasi-geostrophic dynamics.

2 The model

The multi-layer quasi-geostrophic (Q-G) basin model integrates the potential vorticity equa-
tion
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+ $(%!& "!) = '! (1)

in each layer (, where the Jacobian $()& *) is given by
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¡ !)
!,
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It functions as follows:

(I) Given the Q-G potential vorticity " and streamfunction % in each layer and known
forcing functions '!, the tendency ¯eld !".!# is calculated and used to update
the " ¯eld.

(II) This revised " ¯eld is inverted with appropriate boundary conditions to give the
new streamfunction ¯eld

(III) These new " and % ¯elds are then used to calculate the tendency in (I) and so
on.

The equations are ¯nite-di®erenced on a regular grid using standard second order ¯nite
di®erences and are stepped forward in time using a leap-frog scheme.
Boundary conditions upon the baroclinic modes required for the elliptic problem are

deduced from the constraint that the total quantity of °uid in each layer is known from
the continuity equation. A high order r6% (enstrophy-destroying) friction is employed de-
manding two extra boundary conditions. We have chosen to apply the boundary conditions
r2% = r4% = 0. Other boundary conditions (for example no-slip) can easily be introduced.
Before going on to describe the numerical implementation we discuss the dynamical set-

up, the potential vorticity equation and its non-dimensionalisation.
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Figure 2.1: The ocean basin and its topography. (See text for meaning of symbols.)

2.1 The physics of the model

The equations are solved in an /" £ /# rectangular basin (typically /"& /# = 3000 km)
with bottom topography 0(+& ,), see Fig. 2.1. The ocean is taken to have total depth 1
(typically 5000 m) with 2 layers of thicknesses 11& - - - & 1!& - - - &1$ , (see Fig. 2.2) and
densities 31& - - - & 3!& - - - & 3$ . We denote the density jumps 3!+1%! = 3!+1 ¡ 3! between the
layers.
The 4!+1%!, the displacements from equilibrium of the interfaces between the (( + 1)th

and (th layer, and also the bottom topography 0(+& ,) are required [for consistency with the
quasi-geostrophic scaling] to be small relative to the layer thicknesses. Note that the double
su±x e.g. 4!+1%! denotes a quantity evaluated at the interfaces between layers ((+1) and (
| the `thermodynamic levels' in the equivalent level formulation.
The Q-G potential vorticity equation may be derived from:
1) the vorticity equation for each layer

0

0#
(r2% + *,) = 50

!6

!7
(3)

which in the (th layer takes the ¯nite di®erence form

0

0#
(r2%! + *,) =

50
1!
(6!%!¡1 ¡ 6!+1%!) (4)

(here 6!+1%! is the vertical velocity at the (+1/(th interface, r2%! is the relative vorticity,
*, is the planetary vorticity and 50 is the value of the Coriolis parameter at the southern
boundary),
and 2) the equations for the movement of the interfaces between the layers

6!+1%! =8!+1%! +
0

0#
4!+1%! (5)
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Figure 2.2: Schematic representation of the vertical model structure. (See text for meaning
of symbols.)

where 4!+1%! is the deviation of the interface between layers (( + 1) and (. Thus 04.0#
represents the vertical velocity of the interface and the cross-interface velocities 8!+1%! rep-
resent the transformation of °uid from one density to another, and may be considered as
arising from heating terms in the temperature perturbation equation to which, applied at
the thermodynamic levels, Eqn. (5) is equivalent.
The thermal wind relation gives the interface displacements in terms of the streamfunc-

tions in the layers above and below thus

4!+1%! =
5030

9¢3!+1%!
(%!+1 ¡ %!) (6)

where 9 is the gravitational acceleration and 30 is the mean density of water.
Substitution of Eqn. (6) into Eqn.(5) gives (in fact proportional to) the `buoyancy equa-

tion'
0

0#
(%! ¡ %!+1) + 9¢3!+1%!

3050
(6!+1%! ¡8!+1%!) = 0 (7)

or, expanding the substantial derivative

!

!#
(%! ¡ %!+1) + $(%!& %! ¡ %!+1) + 9¢3!+1%!

3050
(6!+1%! ¡8!+1%!) = 0- (8)

Elimination of vertical velocities in Eqn. (4) with Eqn.(8) gives the Q-G potential vorticity
equation

!"!
!#

+ $(%!& "!) = '! (9)
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where

"1 = r2%1 + *, ¡ &20 '0
()1¢'21

(%1 ¡ %2)
"! = r2%! + *, ¡

n
&20 '0

()!¢'!+1"!
(%! ¡ %!+1) + &20 '0

()!¢'!"!¡1 (%! ¡ %!¡1)
o

"$ = r2%$ + *, ¡ &20 '0
()#¢'#"#¡1

(%$ ¡ %$¡1) + &0*
)#

9>>=>>;
(10)

are the quasi-geostrophic potential vorticities in each layer and

'1 = &0
)1
(60 ¡821)¡ :r6%1

'! = &0
)!
(8!%!¡1 ¡8!+1%!)¡ :r6%!

'$ = &0
)#
8$%$¡1 ¡ :r6%$ ¡ ;r2%$

9>=>; (11)

are the potential vorticity forcing functions.
Note 1) 60 is the Ekman suction velocity imposed at the top of the surface layer and can

be related to the imposed wind stress (< ) curl thus:

60 = =->?@A(<.305)- (12)

2) The vertical velocity at the bottom of the ocean is given by

6+,--,. = 6/ +
0

0#
0 (13)

where 0 = 0(+& ,) is the (assumed small) bottom topography and 6/ is the rate of ejection
of °uid from the bottom Ekman layer. This has been parameterised in Eqn. (11) by assuming

6/ =
;1$
50

r2%$ - (14)

3) It may be shown that the (equivalent) perturbation temperature B!+1%! at the interface
is given by

B!+1%! =
50
9)

(%! ¡ %!+1)
0-5(1! +1!+1)

(15)

where ) = (¡!3.!B ).30 is the coe±cient of thermal expansion. The cross-interface velocity
between the (th and ((+ 1)th layers may then be related to the total heat input/unit area
H0 experienced between the middle of the ((+ 1)th and (th layers by

8!+1%! =
)

C1¢3!+1%!
H0- (16)

Values of ) = 2 £ 10¡4 K¡1, C1 = 4000 Jkg¡1 K¡1 appropriate to near surface waters
gives (in ms¡1)

8!+1%! = 5£ 10¡80 H0.¢3!+1%! (17)

if ¢3!+1%! is speci¯ed in kgm
¡3 and H0 in Wm

¡2.
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2.2 The non-dimensional equations

We choose to scale + and , by /#, and 1! and 0 by 1, the total depth of the ocean. We
write the depth of the layer as a fraction of the total depth D! = 1!.1, E = 0.1, and
the density jumps ¢3!+1%!.30 = ¢F!+1%! £ 10¡3, where ¢F!+1%! is the di®erence in density
expressed in F units. If time is scaled by (*/#)

¡1 then for /# = 3000 km and * = 2£ 10¡11,
this timescale (*/#)

¡1 » 10 hours.
We scale % by G2/# where G2 is a characteristic velocity, and scale q by */#. Then Eqn.

(9) becomes
1

H

!"!
!#

+ $(%!& "!) = '
0
! (18)

where H = G2.(*/
2
#) is a Rossby number for the vorticity equation,

"1 = Hr2%1 + , ¡ 342$
5142%

n
61¡62
¢721

o
"! = Hr2%! + , ¡ 342$

5!42%

n
6!¡6!¡1
¢7!"!¡1 +

6!¡6!+1
¢7!+1"!

o
"$ = Hr2%$ + , ¡ 342$

5#4
2
%

n
6#¡6#¡1
¢7#"#¡1

o
+ &08

94$5#

9>>>=>>>; (19)

the `pseudo Rossby radius' /: =
q

()
103&20

(of magnitude 70 km for 1 = 5000 m and 50 = 10
¡4

s¡1). The forcing terms (scaled by *G2) are

'01 = 1
51

;&
;'
(60 ¡821)¡ <

945$
r6%1

'0! = !
5!

;&
;'
(8!%!¡1 ¡8!+1%!)¡ <

945$
r6%!

'0$ = $
5#

;&
;'
8$%$¡1 ¡ <

945$
r6%$ ¡ =

94$
r2%$

9>=>; (20)

where the Sverdrup velocity is given by

G> = 5060.(*1)- (21)

After scaling, the thermodynamic equation becomes

!

!#
(%! ¡ %!+1) +H$(%!& %! ¡ %!+1) + G>/

2
:

G2/2
¢F!+1%!(6!+1%! ¡8!+1%!) = 0- (22)

We have scaled the vertical velocities 8 by 60, a typical value of the Ekman pumping
chosen to be 30 m yr¡1 (10¡6 ms¡1). G> is the depth-averaged value of the meridional
velocity implied by the Sverdrup balance resulting from this Ekman pumping.
In oceanographic studies we have taken the characteristic velocity G2 = G>; for the values

of *, 50, 1 and 60 chosen above, G> » 1mms¡1.

2.3 Numerical integration of the quasi-geostrophic potential vor-
ticity equation

The major steps in the numerical integration are now outlined.
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A centred di®erence leapfrog scheme is used for the forward time-stepping of the ¯nite
di®erence version of the potential vorticity equation (18). Thus

"-+1?%@ ¡ "-¡1?%@ = 2¢#H
©
$ -?%@ +'

0-¡1
?%@

ª
(23)

where the ?%@ su±x denotes the value at the i,jth gridpoint, the $
-
?%@ is the Jacobian and the

"-¡1?%@ are the "'s from the preceding timestep.
The Jacobian $ -?%@ is calculated using values of " and % from the current timestep. The

Arakawa Jacobian (Arakawa, 1966) formulation is used. This ensures that there is no net
advection out of the region of interior points over which time-stepping is performed of 1)
potential vorticity 2) enstrophy 1

2
"2 or 3) energy, so long as % is constant along the boundary

i.e.
X

(!)*+(,+
1,?!-A

$?%@ =
X

(!)*+(,+
1,?!-A

"?%@$?%@ =
X

(!)*+(,+
1,?!-A

%?%@$?%@ = 0- (24)

This stepping forward is only performed at the interior gridpoints. Values of % are then
found everywhere by solving an elliptic equation with appropriate boundary conditions. The
inversion of the Helmholtz equations does not require knowledge of " along the boundary.
The new " along the boundary is, however, required in the calculation of the Jacobian at the
points immediately adjacent to the boundary. It is determined by imposing the condition
that the relative vorticity r2% = 0 on the boundaries.
Values of " and % from the previous timestep are used to calculate the frictional contribu-

tions (Ekman | r2%$ , and biharmonic | r6%! ) to the forcing terms '
0
!. Calculation of

r2% is straightforward: the biharmonic friction is evaluated by repeated application of the
¯nite di®erence r2 operator to the above determined r2% using the condition that r4% = 0
on the boundary.
The mechanical forcing (appearing as an Ekman suction velocity generated by the wind

stress curl) and thermal forcing (imposed as interfacial velocities) are then calculated and
added to the frictional terms to give the '0!'s.

2.4 Inverting the potential vorticity

Eqn. (19) may be written in matrix form, eg.

" = *, +r2% ¡ I% (25)

where I is a positive de¯nite tridiagonal stretching matrix, not necessarily orthogonal, and
", , and % are column vectors comprised of the values of ", , and % on the layers. The
matrix I is de¯ned by

I1%1 = J:.D1(F2 ¡ F1)
I1%2 = ¡I1%1
I?%?¡1 = ¡J:.D?(F? ¡ F?¡1)
I?%? = ¡I?%?¡1 ¡I?%?+1
I?%?+1 = ¡J:.D?(F?+1 ¡ F?)

9=; K = 2& - - - 2 ¡ 1
I$%$¡1 = ¡J:.D$(F$ ¡ F$¡1)
I$%$ = ¡I$%$¡1
I?%@ = 0 jK¡ Lj ¸ 2

9>>>>>>>>>>=>>>>>>>>>>;
(26)
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where

J: =
103G25

2
0

*91
(27)

and 1 is the total model depth, G2 is the characteristic velocity and 50 is the value of the
Coriolis parameter at the southern boundary.
To solve for %, we require that (i) I is non-singular [i.e. EM#I 6= 0(9I stII¡1 = 1)]

and (ii) all eigenvalues of I are real. There are then 2 (not necessarily di®erent) non-zero
eigenvalues N., with corresponding eigenvectors M

. such that

IM. = N.M
.& (28)

where M. = (M.1 & M
.
2 & - - - M

.
$)

: (a column vector).
So if a function 9 = (91& 92& - - - & 9$ ), can be written

9 = 9M. (29)

(i.e. its values in di®erent layers are in the same proportion as those of the eigenvectors M.),
then

r29 ¡ I9 = r29 ¡ N.9- (30)

We will use this to ¯nd a solution of Eqn. (25).
Because I is non-singular, these M. are `complete', i.e. we can express any

% =
P$

.=1 %
.M.

, = ,1 = ,
P$

.=1 1
.M.

" =
P$

.=1 "
.M.

9>=>; (31)

So, expressing Eqn. (25) in terms of the eigenvectors M.

". = *,1. +r2%. ¡ N.%.& O = 1& - - - &2- (32)

This results in 2 independent linear elliptic equations, which are readily solved (using a
Helmholtz-equation solver) for %.. It is then easy to recover % = (%1& %2& - - - & %$) from the
%. by using Eqn. (31).
The method of solution is thus

(i) project " on to the eigenvectors M., and ¯nd ". and *,1.,

(ii) use a Helmholtz equation solver to ¯nd %.,

(iii) recover % from %..

Consider Eqn. (25); suppose we pre-multiply by P¡1, where

P = (M1& M2& - - - & M$) =

0BBB@
M11 M21 - - - M$1
M12 M22 - - - M$2
...

...
...

M1$ M2$ - - - M$$

1CCCA & (33)
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to give
P¡1" = *,P¡11 +r2P¡1% ¡ P¡1IPP¡1% (34)

which can be written as
Q = *,¨+r2ª¡0ª& (35)

where Q = P¡1", ¨ = P¡11, ª = P¡1% are the column vectors composed of the projections
of ", 1 and % respectively on to the 2 eigenvectors M., and

0 = P¡1IP- (36)

Now P¡1P =

0BBB@
1 0 - - - 0
0 1 - - - 0
...
...

...
0 0 - - - 1

1CCCA and P = (M1& M2& - - - & M$) : the columns are eigenvectors.

From Eqn. (33) we can express

P¡1 =

0BBB@
¢ ¢ ¢ M¤1 ¢ ¢ ¢
¢ ¢ ¢ M¤2 ¢ ¢ ¢

...
¢ ¢ ¢ M¤$ ¢ ¢ ¢

1CCCA (37)

where the rows are M¤., with
M¤.-M! = D.%!- (38)

These M¤. are known as the complementary eigenvectors. Now consider 0 = P¡1IP :

IP = I(M1& M2& - - - & M$ ) = (N1M
1& N2M

2& - - - & N$M
$)- (39)

Hence

0 =

0BBB@
¢ ¢ ¢ M¤1 ¢ ¢ ¢
¢ ¢ ¢ M¤2 ¢ ¢ ¢

...
¢ ¢ ¢ M¤$ ¢ ¢ ¢

1CCCA (N1M1& N2M2& - - - & N$M$) =
0BBB@
N1 0 - - - 0
0 N2 - - - 0
...

...
...

0 0 - - - N$

1CCCA - (40)

0 is a diagonal matrix composed of eigenvalues, and % (the values of % on each of the layers)
may be found from the modal projections ª using

% = Pª = (M1& M2& - - - & M$)

0BB@
%1

%2

¢ ¢ ¢
%$

1CCA - (41)

8



2.4.1 Boundary conditions

We now consider the boundary conditions to be imposed on the side boundary values of
%. when evaluating them from the ". [by inversion of the Helmholtz equation (32)]. For
the barotropic mode, it is clearly acceptable to require %1 = 0 along the side boundaries.
However, it is less clear what are the appropriate boundary conditions on the baroclinic
modes. By considering the horizontally-averaged mean interface displacements, conservation
of mass requires

!

!#

n
%!+1 ¡ %!"#

o
=
9¢3!+1%!
3050

¡
6!+1%! ¡8!+1%!

"#¢
(42)

where R
"#
denotes a horizontal average of R over the basin, 6!+1%! is the vertical velocity

at the interface and 8!+1%! is the cross-interface velocity resulting from buoyancy forcing.
Note that in the horizontal averaging, half weight must be given to points on the boundary
and quarter weight to corner points, since the condition % = 0 is applied at the gridpoints.
The horizontal advection terms must sum to zero since there can be no °ow through the side
boundaries.
Initially, we will require 6!+1%! = 8!+1%! = 0, which represents the condition of no net

vertical motion or buoyancy forcing. Since the mean interfacial displacements are propor-
tional to ¥!+1%!

"#
= %!+1 ¡ %!"#, it is clear that these (2 ¡ 1) ¥!+1%!"# (there are 2 layers)

are determined if we know the mean vertical velocities and buoyancy forcings.
Let

S =
³
%1

"#
&¥21

"#
& - - - &¥$%$¡1

"#
´:
=

0BBB@
P$

!=1 M
¤1%!

"#

%2 ¡ %1"#
...

%$ ¡ %$¡1"#

1CCCA

=

0BBBBB@
M¤1

¡1 1 0 - - - 0
0 ¡1 1 - - - 0
...

...
...

...
0 0 0 - - - 1

1CCCCCA

0BBBBB@
%1

"#

%2
"#

%3
"#

...

%$
"#

1CCCCCA = T%
"#
-

As long as T is non-singular (detT 6= 0), we can write

%
"#
= T¡1S- (43)

But we can express the modal projection in terms of levels thus:

ª = P¡1%& (44)

so the mean modal projections ª
"#
must satisfy

ª
"#
= P¡1T¡1S = P2S = U- (45)
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Thus the continuity equation (42) has given us the U., the horizontally-averaged values
of the baroclinic modes. These will generally be di®erent from the %.0

"#
, the spatial averages

of the solutions derived by inverting

r2%.0 ¡ N.%.0 = ". (46)

with %.0 = 0 on the boundaries.
The solution is thus found by adding a multiple > of the homogeneous solution %.+ which

obeys
r2%.+ ¡ N.%.+ = 0 (47)

with %.+ = 1 on the boundaries, such that %
.
0 + >%

.
+

"#
= U..

Thus (i) Eqn. (46) is used to calculate %.0 , (ii) > is set equal to
³
U. ¡ %.0

"#
´
.%.+

"#
(the

%.+ ¯elds do not change and therefore need only be calculated once), and (iii) >%
.
+ is added

to the %.0 ¯elds to give the new %
. ¯eld.

2.4.2 Summary

In the model the following procedure is adopted:

(1) We de¯ne the matrix I .

(2) The eigenvalues N. of I and the matrix P are found; the column vectors of P
are the eigenvectors of I, de¯ned by

IM. = N.M
.- (48)

(3) The inverse matrix of P, P¡1, is computed.

(4) The matrix product of T and P is calculated by multiplying the two matrices

T =

0BBB@
M¤11 M¤12 - - - M¤1$
¡1 1 - - - 0
...

...
...

0 0 - - - 1

1CCCA & P =
0BBB@
M11 M21 - - - M$1
M12 M22 - - - M$2
...

...
...

M1$ M2$ - - - M$$

1CCCA - (49)

(5) The inverse of this product is evaluated to give P2

P2 = (T P)
¡1 = P¡1T¡1- (50)

(6) All the elements of ¥
"#
are set to zero initially

(7) %.+ is set to 1 on the boundaries for modes 2 to 2 . The interior values are then
calculated (these remain ¯xed throughout the simulation) and %.+

"#
is found by

horizontal averaging of %.+ . The steps which are taken in inverting the " ¯eld to
give the % ¯eld each timestep now follow:
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(8) ¥
"#
is found for levels 2 to 2 by determining the mean interfacial displacements³

%? ¡ %?¡1"#
´
.

(9) %.0 is set to zero on all the boundaries.

(10) After subtracting *, and the topography from ", ". is found by projecting " on
to the modes, eg.

". =
$X
B=1

(P¡1B )
."B (51)

where = is the level number, and O is the mode number.

(11) The Helmholtz equation solver is used to invert the ". to give the %.0 for all the
internal gridpoints %.0

"#
is then calculated by horizontal averaging.

(12) For the ¯rst (barotropic) mode,¥
"#
is equated to %10

"#
(i.e. the ¯rst element in

vector S) while for the other (baroclinic) modes U. is found by evaluating the
product of P2 and S. The coe±cient > is then found using

> = (U. ¡ %.0
"#
).%.+

"#
- (52)

(13) %. is then evaluated using %.0 + >%
.
+ .

(14) The streamfunction in each layer of the model is then determined from the modes
using Eqn. (31).
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2.5 Useful references
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