
12.950

Parallel Programming

for Multicore Machines

using OpenMP and MPI

Dr. C. Evangelinos, MIT

Parallel Programming for Multicore Machines Using OpenMP and MPI

Course Syllabus

● Day 2 (OpenMP wrapup and MPI Pt2Pt):

● EC2 cluster and Vmware image demo

● Homework discussion

● OpenMP 3.0 enhancements

● Fundamentals of Distributed Memory Programming

● MPI concepts

● Blocking Point to Point Communications

Parallel Programming for Multicore Machines Using OpenMP and MPI

OpenMP 3.0

● In draft form since October 2007, finalized in 2008.

● Support for tasking

● Addition of loop collapse directive

● Enhanced loop schedules SCHEDULE(AUTO)

● Improved nested parallelism support

● Autoscoping: DEFAULT(AUTO)

Parallel Programming for Multicore Machines Using OpenMP and MPI

Tasking

●	 Most major new enhancement to OpenMP, allows for
expressing irregular parallelism.
●	 Similar to Cilc (MIT) and other vendor (C#, TBB) efforts

● Spawn a new task and run it or queue it for running

#pragma omp task [clauses]

C$OMP TASK [CLAUSES]

C$OMP END TASK

●	 The clauses are if, untied, default, private, firstprivate and
shared.

Parallel Programming for Multicore Machines Using OpenMP and MPI

A linked list with tasks

#pragma omp parallel

{

#pragma omp single private(p)

{

p = listhead ;

while (p) {

#pragma omp task

process (p)

p=next (p) ;

}

}

}

Parallel Programming for Multicore Machines Using OpenMP and MPI

taskwait

● #pragma omp taskwait

● C$OMP TASK WAIT
● Wait for all tasks spawned by the current task (children)

● Partial synchronization compared to a barrier.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Better nested parallelism

● Loop collapsing

#pragma omp collapse(2)

for (i = 0; i < N; ++i)

for (j = 0; j < M; ++j)

do_work();

●	 More routines to set and discover the nested parallel

structure and control the nesting environment

●	 Per task internal control variables controlling nested
parallelism.

Parallel Programming for Multicore Machines Using OpenMP and MPI

MPI

Distributed Memory

Programming

using

MPI

Parallel Programming for Multicore Machines Using OpenMP and MPI

Acknowledgments

● MPI Forum

● Joel Malard, Alan Simpson (EPCC)

● Rolf Rabenseifner, Traugott Streicher (HLRS)

● The MPICH team at ANL

● The LAM/MPI team at Indiana University

Parallel Programming for Multicore Machines Using OpenMP and MPI

Shared Memory Programming
● Under the assumption of a single address space one uses multiple control

streams (threads, processes) to operate on both private and shared data.

● Shared data: synchronization, communication, work

● In shared arena/mmaped file (multiple processes)

● In the heap of the process address space (multiple threads)

Process
address
space

Thread

Private
stack

Thread

Private
stack

Heap

Single
process
space

Process

Private
stack

Private
heap

Process

Private
stack

Private
heap

Shared
memory

arena

Parallel Programming for Multicore Machines Using OpenMP and MPI

Distributed Memory Programming

●	 Multiple independent control streams (processes in
general) operating on separate data and coordinating by
communicating data and information.

●	 Most common communication method: Message Passing
●	 Multiple Program Multiple Data (MPMD) (eg. master-slave)

● Single Program Multiple Data (SPMD) (eg. data parallel)

Parallel Programming for Multicore Machines Using OpenMP and MPI

data data data data

Communication network

subprogram subprogram subprogram subprogram

Distributed memory

Parallel processors

Figure by MIT OpenCourseWare.

SPMD & MPMD

●	 SPMD can be considered a

special case of MPMD

●	 MPMD can be implemented
as a SPMD program which
depending on some criterion
executes the relevant
constituent code

switch (myid) {

case 0:

run_prog1();

breaksw;

case 1:

run_prog2();

breaksw;}

●	 All data is private to each
process. Some of it however
may map to the same
physical variables as the
corresponding private data
in other processes (eg.
shadow cells, boundary
data):

●	 Communication is

required to enforce

consistency

●	 Communication can be
direct or collective

Parallel Programming for Multicore Machines Using OpenMP and MPI

MPI: Message Passing Interface

●	 A standard API for message passing communication and process

information lookup, registration, grouping and creation of new
message datatypes.

●	 Point to point comms: ([non]blocking, [a]synchronous)

●	 Collective comms: one-many, many-one, many-many

●	 Code parallelization cannot be incremental

●	 Supports coarse level parallelism and parallel I/O

●	 Fortran 77 and C support, C++/Fortran90 in MPI-2

●	 Very large API (128), MPI-2 document adds quite a lot (152).
Most users do not use but a fraction of it.

●	 Performance oriented standard.

Parallel Programming for Multicore Machines Using OpenMP and MPI

MPI history

●	 Many message passing libraries in the past:

●	 TCGMSG, P4, PARMACS, EXPRESS, NX, MPL, PVM

●	 Vendor specific, research code, application driven

●	 1992-94 the Message Passing Forum defines a standard for message
passing (targeting MPPs)

●	 Evolving standards process:

●	 1994: MPI 1.0: Basic comms, Fortran 77 & C bindings

●	 1995: MPI 1.1: errata and clarifications

●	 1997: MPI 2.0: single-sided comms, I/O, process creation, Fortran 90 and
C++ bindings, further clarifications, many other things. Includes MPI-1.2.

●	 2008: MPI 1.3, 2.1: combine 1.3 and 2.0, corrections & clarrifications

●	 2009: MPI 2.2: corrections & clarrifications

●	 MPI 3.0 standardization in progress.

Parallel Programming for Multicore Machines Using OpenMP and MPI

The Genealogy of MPI

Parallel Programming for Multicore Machines Using OpenMP and MPI

MPI

EUI

TCGMSG

p4

NX

Express

Zipcode

CMMD
PVM

Chameleon
PARMACS

Parallel Librarles

Parallel Applications

Parallel Languages

The Message Passing Interface Standard

Figure by MIT OpenCourseWare.

MPI Basics

●	 mpi.h and mpif.h include files for C/C++ and Fortran

error = MPI_Xxxxx(argument, ...);

call mpi_xxxxx(argument, ..., error)

●	 Notice that all routines have to return an error value

●	 mpi module for Fortran90

●	 MPI_ namespace reserved for MPI

●	 MPI:: namespace for C++

●	 In C/C++ (in)out arguments passed as pointers

●	 Always start with MPI_Init() and end with MPI_Finalize() (or
MPI_Abort()).Both calls need to be made by all processes

Parallel Programming for Multicore Machines Using OpenMP and MPI

Minimal MPI subset

●	 There is a minimal subset of MPI that allows users to write

functional parallel programs without learning all hundreds of MPI
functions and going through hoops:

●	 MPI_Init()/MPI_Finalize()/MPI_Abort()

●	 MPI_COMM_WORLD

●	 MPI_Comm_size()/MPI_Comm_rank()

●	 MPI_Send()/MPI_Recv()

●	 MPI_Isend()/MPI_Irecv()/MPI_Wait()

●	 You might be able actually to stick to the 6 functions in red if your
message sizes are small enough

●	 For performance as well as code compactness reasons you will
need to at least use collective comms.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Initialization

● int MPI_Init(int *argc, char ***argv)

● MPI_INIT(ier), integer ier

● Called before any other MPI call. Only
● MPI_Initialized(int *flag)

● MPI_INITIALIZED(flag, ierror), logical flag

is allowed before it.

● It initializes the MPI environment for the process.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Communicators and handles

●	 A communicator is an ordered set of processes, that remains

constant from its creation until its destruction

●	 All MPI processes form the MPI_COMM_WORLD
communicator

●	 Users can create their own (subset) communicators

●	 MPI_COMM_WORLD gets created at the very beginning and
is a handle defined in the include files

●	 handles are predefined constants in the include files, that are
of integer type for Fortran and special typedefs for C/C++

●	 Handles describe MPI objects and datatypes

Parallel Programming for Multicore Machines Using OpenMP and MPI

Communicator size

● MPI_Comm_size(MPI_Comm comm, int *size)

● MPI_COMM_SIZE(comm, size, ier)
● all arguments are integers, henceforth not repeated

● Returns the size of the communicator set.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figure by MIT OpenCourseWare.

Process rank

●	 MPI_Comm_rank(MPI_Comm comm, int *rank)
●	 MPI_COMM_RANK(comm, rank, ier)
●	 Returns the rank of the process in the communicator
●	 If communicators A and B are different and the

process belongs to both of them, its rank in one of
them is unrelated to its rank in the other

●	 Its value is between 0 and (size-1)

Parallel Programming for Multicore Machines Using OpenMP and MPI

myrank=0 myrank=1 myrank=2 myrank=
(size-1)

Communication network

CALL MPI_COMM_RANK(MPI_COMM_WORLD,myrank, ierror)
Figure by MIT OpenCourseWare.

Exiting
●	 For a graceful exit all processes need to call last:

●	 MPI_Finalize()

●	 MPI_FINALIZE(ierror)

●	 If a process catches an error that cannot be corrected, a user
can call:

●	 MPI_Abort(MPI_Comm comm, int errorcode)

●	 MPI_ABORT(comm, errorcode, ier)

●	 This will make a best attempt to abort all other tasks in the
communicator set. Currently works only for
MPI_COMM_WORLD. The errorcode is usually the return
value of the parallel executable.

Parallel Programming for Multicore Machines Using OpenMP and MPI

The usual "hello world"

IMPLICIT NONE

INCLUDE "mpif.h"

INTEGER ierror, rank, size

CALL MPI_INIT(ierror)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank,

ierror)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
IF (rank .EQ. 0) THEN

WRITE(*,*) 'I am process', rank, ' out of', size,

& ': Hello world!'

ELSE

WRITE(*,*) 'I am process', rank, ' out of', size

END IF

CALL MPI_FINALIZE(ierror)

END

Parallel Programming for Multicore Machines Using OpenMP and MPI

Communications

●	 So far we have not explicitly exchanged any information between

processes.

●	 Communications can be between two processes (point to point) or
between a group of processes (collective)

●	 Communications involve arrays of data organized as MPI
datatypes:

●	 Datatypes can be predefined with a mapping to host language basic
datatypes

●	 They can also be user-defined, as structures of basic or other user-
defined datatypes

●	 User defined datatypes hide the complexity of the data exchange and
leave it to the MPI library to optimize it

Parallel Programming for Multicore Machines Using OpenMP and MPI

n

ION

MPI Basic Datatypes

MPI Datatypes for C C datatypes MPI Datatypes for FortraFortran datatypes
MPI_CHAR signed char
MPI_SHORT signed short
MPI_INT signed int MPI_INTEGER INTEGER
MPI_LONG signed long
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORTunsigned short
MPI_UNSIGNED_INT unsigned int
MPI_UNSIGNED_LONG unsigned long
MPI_FLOAT float MPI_REAL REAL
MPI_DOUBLE double MPI_DOUBLE_PRECISDOUBLE PRECISION
MPI_LONG_DOUBLE long double

MPI_CHAR CHARACTER(1)
MPI_LOGICAL LOGICAL
MPI_COMPLEX COMPLEX

MPI_BYTE MPI_BYTE
MPI_PACKED MPI_PACKED

Parallel Programming for Multicore Machines Using OpenMP and MPI

Messages

●	 The purpose is the "exchange" of information, much

the mail system. Thus every message (document) has:
●	 A sender address (rank, like

a business address)

●	 A message location (starting
address, like the document's
location)

●	 A message datatype (what is
being sent)

●	 A message size (how big is
it in datatype units)

●	 A message tag

●	 A destination address (rank,
like another business
address)

●	 A destination location (that
cabinet in the office of so-
and-so)

●	 Compatible datatype and
size combo in order to fit

●	 Matching tag

Parallel Programming for Multicore Machines Using OpenMP and MPI

Point to Point Comms

●	 Blocking comms: Block until completed (send stuff on your own)

●	 Non-blocking comms: Return without waiting for completion (give
them to someone else)

●	 Forms of Sends:

●	 Synchronous: message gets sent only when it is known that someone is
already waiting at the other end (think fax)

●	 Buffered: message gets sent and if someone is waiting for it so be it;
otherwise it gets saved in a temporary buffer until someone retrieves it.
(think mail)

●	 Ready: Like synchronous, only there is no ack that there is a matching
receive at the other end, just a programmer's assumption! (Use it with
extreme care)

Parallel Programming for Multicore Machines Using OpenMP and MPI

Point to Point messages

Synchronous vs. Asynchronous

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figure by MIT OpenCourseWare.

Ok

Beep

Figure by MIT OpenCourseWare.

MPI blocking standard send

●	 MPI_Send(void *buf, int cnt, MPI_Datatype type, int dest, int

tag, MPI_Comm comm)

●	 MPI_SEND(buf, cnt, type, dest, tag, comm, ier)

●	 buf is an array of variable type in Fortran...

●	 buf is the starting address of the array

●	 cnt is its length

●	 type is its MPI datatype

●	 comm is the communicator context

●	 int is the rank of the destination process in comm

●	 tag is an extra distinguishing number, like a note

Parallel Programming for Multicore Machines Using OpenMP and MPI

Other blocking sends

●	 MPI_Ssend: Synchronous send

●	 The sender notifies the receiver; after the matching receive is
posted the receiver acks back and the sender sends the message.

●	 MPI_Bsend: Buffered (asynchronous) send

●	 The sender notifies the receiver and the message is either
buffered on the sender side or the receiver side according to
size until a matching receive forces a network transfer or a
local copy respectively.

●	 MPI_Rsend: Ready send

●	 The receiver is notified and the data starts getting sent

immediately following that. Use at your own peril!

Parallel Programming for Multicore Machines Using OpenMP and MPI

Things to consider

●	 Depending on the MPI implementation, MPI_Send may behave as

either MPI_Ssend or MPI_Bsend.

●	 Usually buffered for small messages, synchronous for larger ones.
Very small messages may piggypack on the initial notification sent
to the receiver. The switchover point can be tunable (see
P4_SOCKBUFSIZE for MPICH)

●	 For buffered sends it uses an internal system buffer

●	 MPI_Bsend may use a system buffer but cannot be guaranteed to
work without a user-specified buffer setup using

●	 MPI_Buffer_attach(void *buffer, int size)

●	 MPI_Ssend can lead to deadlocks

Parallel Programming for Multicore Machines Using OpenMP and MPI

Blocking send performance

●	 Synchronous sends offer the highest asymptotic data rate

(AKA bandwidth) but the startup cost (latency) is very high,
and they run the risk of deadlock.

●	 Buffered sends offer the lowest latency but:

●	 suffer from buffer management complications

●	 have bandwidth problems because of the extra copies and
system calls

●	 Ready sends should offer the best of both worlds but are so
prone to cause trouble they are to be avoided!

●	 Standard sends are usually the ones that are most carefully
optimized by the implementors. For large message sizes they
can always deadlock.

Parallel Programming for Multicore Machines Using OpenMP and MPI

MPI blocking receive

●	 Irrespective of the send employed, there is one blocking

receive operation on the other end

●	 MPI_Recv(void *buf, int cnt, MPI_Datatype type, int src, int
tag, MPI_Comm comm, MPI_Status *stat)

●	 MPI_RECV(buf, cnt, type, src, tag, comm, stat, ier)

●	 buf is the starting address of the target array

●	 cnt is its length, type is its MPI datatype

●	 comm is the communicator context

●	 src is the rank of the source process in comm

●	 tag needs to match along with src and comm

Parallel Programming for Multicore Machines Using OpenMP and MPI

Issues with MPI_Recv

●	 Upon completion of the call the message is stored in the target

array and can safely be used

●	 However if buf had the wrong datatype/size combination the
message was probably either truncated or padded with garbage.

●	 Message envelope information (source, tag along with
information that can give the size using MPI_Get_count) is
stored in the MPI_Status (structure/integer array)

●	 Along with error code can be used for debugging purposes

●	 MPI_ANY_SOURCE and MPI_ANY_TAG are wildcards for
matching receives (less work)

●	 Fortran status is int array of size MPI_STATUS_SIZE

Parallel Programming for Multicore Machines Using OpenMP and MPI

Message passing restrictions
●	 Order is preserved. For a given channel (sender, receiver,

communicator) message order is enforced:

●	 If P sends to Q, messages sa and sb in that order, that is the
order they will be received at B, even if sa is a medium
message sent with MPI_Bsend and sb is a small message sent
with MPI_Send. Messages do not overtake each other.

●	 If the corresponding receives ra and rb match both messages
(same tag) again the receives are done in order of arrival.

●	 This is actually a performance

drawback for MPI but

helps avoid major

programming errors.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figure by MIT OpenCourseWare.

Ping-Pong

●	 Test send-receive pairs in the simplest of scenarios:

●	 A pair of processes exchanging messages back and forth.

●	 Use double precision utility function MPI_Wtime to get

wallclock time in seconds as a benchmark

●	 The variations of the benchmark allow us to measure latency,
the time for a very small message to be exchanged, as well as
bandwidth, the rate at which a very large message gets sent out.

if (myrank == 0) {
MPI_Send(..,1,..);
MPI_Recv(..,1,..);

} else {
MPI_Recv(..,0,..);
MPI_Send(..,0,..);

}

Parallel Programming for Multicore Machines Using OpenMP and MPI

rank=0rank=1

Loop

Send (dest=1)

Recv (source=0)
Send (dest=0)

Recv (source=1)

Figure by MIT OpenCourseWare.

MIT OpenCourseWare
http://ocw.mit.edu

12.950 Parallel Programming for Multicore Machines Using OpenMP and MPI
IAP 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Ack
	Shared Memory
	DM
	MPMD
	MPI
	Timeline
	Tpic
	Basics
	Minimal
	Init
	COMM
	size
	rank
	exit
	hello
	Comms
	Datatypes
	Messages
	P2PC
	SyncAsync
	MPI_Send
	Sends
	caveats
	Perf
	MPI_Recv
	more recv
	Restrictions
	Ping-Pong

