
Today's agenda
● Homework discussion

● Collective Communications: All-with-All

● Derived Datatypes

● Groups, Contexts and Communicators

● Topologies

● Language Binding issues

● The Runtime and Environment Management

● The MPI profiling interface and tracing

Parallel Programming for Multicore Machines Using OpenMP and MPI

Reduce-Scatter
●MPI_Reduce_scatter(void *sendbuf, void *recvbuff, int *revcnt,
MPI_Datatype type, MPI_Op op, MPI_Comm comm)

●MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcnt, type, op,
comm, ier)

●Can be considered as a

MPI_Reduce(sendbuf, tmpbuf, cnt, type, op, root, comm);

MPI_Scatterv(tmpbuf, recvcnt, displs, type, recvbuff,

recvcnt[myid], type, root, comm);

where cnt is the total sum of the recvcnt values and displs[k] is
the sum of the recvcnt for up to processor k-1.

●Implementations may use a more optimal approach

Parallel Programming for Multicore Machines Using OpenMP and MPI

How it would work for matvec

Parallel Programming for Multicore Machines Using OpenMP and MPI

1

Rank=0

2
3
4
5
6

11

Rank=1

COMM

12
13
14
15
16

21

Rank=2

22
23
24
25
26

33
36
39
42
45
48

recvbuf
recvbuf recvbuf

SendbufSendbuf

op

33 36

39

42
45

48

recvcounts(0)

recvcounts(1)

recvcounts(2)

MPI Reduce Scatter

=

A X Y

Figure by MIT OpenCourseWare.

3DFFT

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figure by MIT OpenCourseWare.

x yz Alternative decomposition

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figure by MIT OpenCourseWare.

Why Derived Datatypes?

●	 So far all MPI operations seen operate on 1D arrays of predefined

datatypes.

●	 Multidimensional arrays (linearly stored in memory) can be sent as
the equivalent 1D array

●	 Contiguous sections of arrays need to be copied (implicitly in
Fortran 90/95) to one big chunk to sent over

●	 Edges, vertices etc. of 2D/3D arrays need to be sent separately or
packed to a sent buffer on the sent side and unpacked from the
receive buffer on the receive side, at the programmer's effort

●	 Strided data needs to be packed/sent/received/unpacked as above.

●	 Message aggregation: int & double in same message

Parallel Programming for Multicore Machines Using OpenMP and MPI

,...,(typeN,dispN)}

basic datatype 0 displacement of datatype 0

displacement of datatype 1

displacement of datatype n-1

basic datatype 1

basic datatype n-1

... ...

What is a Derived Datatype?
●	 A general datatype is an opaque object specifying:

●	 A sequence of basic datatypes

●	 A sequence of integer (byte) displacements

●	 Type signature:

●	 {type1, type2, ..., typeN}

●	 Type map:

●	 {(type1,disp1), (type2,disp2)

●	 The displacements are not required to be positive, distinct, or
in increasing order. Therefore, the order of items need not
coincide with their order in store, and an item may appear
more than once.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Figure by MIT OpenCourseWare.

A derived datatype

Parallel Programming for Multicore Machines Using OpenMP and MPI

0 4 8 12 16 20 24

Example:

derived datatype handle

basic datatype

MPI_CHAR

MPI_INT

MPI_INT

MPI_DOUBLE

displacement

0

4

MPI_CHAR 1

8

16

c d 10 30 3.11d-33

A derived datatype describes the memory
layout of, e.g., structures, common blocks,
subarrays, some variables in the memory

Figure by MIT OpenCourseWare.

More details

●	 Basic (predefined) MPI datatypes are in fact defined in the same

way, based on base language datatypes

●	 (User) derived datatypes can be defined in terms of basic as well as
other defined datatypes.

●	 This level of recursive definition can be repeated to construct very
complicated datatypes

●	 Just like basic datatypes, defined datatypes can be used as
arguments to communication routines.

●	 An efficient implementation of communication events when
working with such complicated datatypes is left to the
implementation

●	 May use optimizations known to work on architecture

Parallel Programming for Multicore Machines Using OpenMP and MPI

Size and Extent

●	 Size: length of "useful" part == data to be transferred

●	 Extent: the span from the first byte to the last byte
occupied by entries in this datatype, rounded up to
satisfy alignment requirements.

●	 Alignment is architecture/language/compiler specific

Parallel Programming for Multicore Machines Using OpenMP and MPI

oldtype

newtype

size : = 6* size(oldtype)

extent : = 8* extent(oldtype)

better visualization of newtype:

Figure by MIT OpenCourseWare.

Datatype construction: Contiguous

●	 MPI_Type_contiguous(int count, MPI_Datatype

oldtype, MPI_Datatype *newtype)

●	 The simplest possible derived datatype

●	 Concatenation of count copies of oldtype variables

●	 Call with 2, MPI_DOUBLE_PRECISION to get your
own MPI_DOUBLE_COMPLEX in Fortran if absent.

Parallel Programming for Multicore Machines Using OpenMP and MPI

oldtype

newtype

Figure by MIT OpenCourseWare.

Datatype construction: Vector

●	 MPI_Type_vector(int count, int blocklength, int stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

●	 Concatenation of count copies of blocks of oldtype variables
of size blocklength positioned stride blocks apart. Strides
(displacements) can be negative.

Parallel Programming for Multicore Machines Using OpenMP and MPI

oldtype

newtype

holes, that should not be transferred

blocklength = 3 element per block

stride = 5 (element stride between blocks)

count = 2 blocks

Figure by MIT OpenCourseWare.

More about vector types

●	 Type before described as

●	 MPI_Type_vector(2, 3, 5, oldtype, newtype)

●	 MPI_Type_contiguous(n, oldtype, newtype) same as:

●	 MPI_Type_vector(n, 1, 1, oldtype, newtype)

●	 MPI_Type_vector(1, n, k, oldtype, newtype) for any k

●	 MPI_Type_hvector() requires stride to be in bytes, instead of
oldtype units. Type is MPI_Aint.

●	 MPI_Type_indexed(int count, int *array_of_blocklen, int
*array_of_displacements, MPI_Datatype oldtype,
MPI_Datatype *newtype); MPI_Type_hindexed()

●	 For vectors with variably sized blocks, variable strides

Parallel Programming for Multicore Machines Using OpenMP and MPI

Datatype construction: Structure

Parallel Programming for Multicore Machines Using OpenMP and MPI

Struct buff_layout

MPI_Type_struct(2, array_of_blocklengths,
 array_of _displacements, array_of_types,
 &buff_datatype);

MPI_Type_commit(&buff_datatype);

&buffer = the start
 address of the data

the datatype handle
describes the data layout

Compiler

{ int i_val[3];
 double d_val[5];

} buffer;

double

MPI_Send(&buffer, 1, buff_datatype, ...)

array_of_types[0]=MPI_INT;
array_of_blocklengths[0]=3;
array_of_displacements[0]=0;
array_of_types[1]=MPI_DOUBLE;
array_of_blocklengths[1]=5;
array_of_displacements[1]=...;

int

Figure by MIT OpenCourseWare.

Alignment, gaps and addresses
●	 MPI_Type_struct(int count, int *array_of_blocklengths,

MPI_Aint *array_of_displacements, MPI_Datatype
*array_of_oldtypes, MPI_Datatype *newtype);

●	 Alignment restrictions may require the presence of gaps in
your structure.

●	 count=2, array_of_blocklenghts=[3,5],
array_of_types=[MPI_INT,MPI_DOUBLE]

●	 What about array_of_displacements ? [0,addr1-addr0]

Parallel Programming for Multicore Machines Using OpenMP and MPI

oldtypes

newtype

MPI_INT MPI_DOUBLE

addr_0 addr_1

block 0 block 1holes, if double needs an
8 byte alignment

in_d_valin_i_val

in_buf_datatype

out_buf_datatype

out_d_valout_i_val
Figure by MIT OpenCourseWare.

Address, size and extent
●	 MPI_Address(void* location, MPI_Aint *address)

●	 MPI_BOTTOM for the start of the address space

●	 Use MPI_Address to get absolute addresses for your
constituent parts and calculate the correct displacement, with
the gaps the the compiler requires

●	 MPI_Type_lb/ub() & MPI_LB/UB for endbounds

●	 MPI_Type_extent(MPI_Datatype datatype, MPI_Aint
*extent)

● Will calculate the proper extent in bytes of the datatype

●	 MPI_Type_size(MPI_Datatype datatype, int *size)

●	 Will calculate the proper size in bytes ("useful" part that gets
communicated) of the datatype.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Correct usage of addresses (std)

●	 Successively declared variables in C or Fortran are not

necessarily stored at contiguous locations. Thus, care must be
exercised that displacements do not cross from one variable to
another. Also, in machines with a segmented address space,
pointers arithmetic has some peculiar properties. Thus, the use
of pointer addresses should instead be replaced by the use of
absolute addresses, ie. displacements relative to the start
address MPI_BOTTOM.

●	 Variables belong to the same sequential storage if they belong
to the same array, to the same COMMON block in Fortran, or
to the same structure in C. Beware of unions! Look up the
rules in the standard!

Parallel Programming for Multicore Machines Using OpenMP and MPI

Creating & destroying datatypes

●	 MPI_Type_commit(MPI_Datatype *datatype)

●	 You can now go ahead and use the datatype in any

communication operation that makes sense.

●	 A datatype may specify overlapping entries. The use of such a
datatype in a receive operation is erroneous. (This is erroneous
even if the actual message received is short enough not to write
any entry more than once.)

●	 MPI_Type_free(MPI_Datatype *datatype)

●	 Freeing a datatype does not affect any other datatype that was
built from the freed datatype. The system behaves as if input
datatype arguments to derived datatype constructors are passed
by value. Any communication operations using this datatype
that are still pending will complete fine.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Creating equivalent types

●	 Create types:

●	 CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, type2, ...)

●	 CALL MPI_TYPE_CONTIGUOUS(4, MPI_REAL, type4, ...)

●	 CALL MPI_TYPE_CONTIGUOUS(2, type2, type22, ...)

●	 With proper care, any of the above can be used to
accomplish the same end. Which is to be used is a
matter of programming clarity and performance.
While in principle complex types composed of
complex types should not be slower, implementations
may not really manage the indirection well.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Matching sends & receives

● Sends:

● CALL MPI_SEND(a, 4, MPI_REAL, ...)

● CALL MPI_SEND(a, 2, type2, ...)

● CALL MPI_SEND(a, 1, type22, ...)

● CALL MPI_SEND(a, 1, type4, ...)

● Receives:

● CALL MPI_RECV(a, 4, MPI_REAL, ...)

● CALL MPI_RECV(a, 2, type2, ...)

● CALL MPI_RECV(a, 1, type22, ...)

● CALL MPI_RECV(a, 1, type4, ...)

● Each of the sends matches any of the receives.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Counting

●	 MPI_Get_elements(MPI_Status *status, MPI_Datatype datatype,

int *count)

●	 MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int
*count)

● Define a derived datatype

CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, Type2, ierr)

CALL MPI_TYPE_COMMIT(Type2, ierr)

● One processors sends consecutively:

CALL MPI_SEND(a, 2, MPI_REAL, 1, 0, comm, ierr)

CALL MPI_SEND(a, 3, MPI_REAL, 1, 0, comm, ierr)

Parallel Programming for Multicore Machines Using OpenMP and MPI

Counting example

● The other process receives

CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)

CALL MPI_GET_COUNT(stat, Type2, i, ierr) !i=1

CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) !i=2

CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)

CALL MPI_GET_COUNT(stat, Type2, i, ierr)

! returns i=MPI_UNDEFINED

CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) !i=3

Parallel Programming for Multicore Machines Using OpenMP and MPI

Datatyping array sections

REAL a(100,100,100), e(9,9,9) ! e=a(1:17:2, 3:11, 2:10)

CALL MPI_TYPE_VECTOR(9, 1, 2, MPI_REAL, oneslice,
ierr)

CALL MPI_TYPE_HVECTOR(9, 1, 100*sizeofreal, oneslice,
twoslice, ierr)

CALL MPI_TYPE_HVECTOR(9, 1, 100*100*sizeofreal,
twoslice, 1, threeslice, ierr)

CALL MPI_TYPE_COMMIT(threeslice, ierr)

CALL MPI_SENDRECV(a(1,3,2), 1, threeslice, myrank, 0, e,
9*9*9, MPI_REAL, myrank, 0, MPI_COMM_WORLD,
status, ierr)

Parallel Programming for Multicore Machines Using OpenMP and MPI

Groups, Contexts, Communicators

●	 Group: An ordered set of processes, each associated with a

rank (within a continuous range). Part of a communicator.

●	 Predefined: MPI_GROUP_EMPTY,MPI_GROUP_NULL

●	 Context: A property of a communicator that partitions the
communication space. Not externally visible.

●	 Contexts allow Pt2Pt and collective calls not to interfere
with each other; same with calls belonging to different
communicators.

●	 Communicator: Group+Context+cached info

● Predefined: MPI_COMM_WORLD,MPI_COMM_SELF

●	 Intra- and Inter-communicators

Parallel Programming for Multicore Machines Using OpenMP and MPI

Group Constructors

●	 MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

●	 MPI_Group_union(MPI_Group group1, MPI_Group group2, MPI_Group *newgroup)

●	 MPI_Group_intersection(MPI_Group group1, MPI_Group group2, MPI_Group
*newgroup)

●	 MPI_Group_difference(MPI_Group group1, MPI_Group group2, MPI_Group
*newgroup)

●	 MPI_Group_incl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)

●	 MPI_Group_excl(MPI_Group group, int n, int *ranks, MPI_Group *newgroup)

●	 MPI_Group_range_incl(MPI_Group group, int n, int ranges[][3], MPI_Group
*newgroup)

●	 MPI_Group_range_excl(MPI_Group group, int n, int ranges[][3], MPI_Group
*newgroup)

Parallel Programming for Multicore Machines Using OpenMP and MPI

More group functions

●	 MPI_Group_free(MPI_Group *group)

●	 MPI_Group_size(MPI_Group group, int *size)

●	 MPI_Group_rank(MPI_Group group, int *rank)

●	 MPI_Group_translate_ranks (MPI_Group group1, int n, int
*ranks1, MPI_Group group2, int *ranks2)

●	 MPI_Group_compare(MPI_Group group1,MPI_Group group2, int
*result)

●	 MPI_IDENT results if the group members and group order is
exactly the same in both groups. This happens for instance if
group1 and group2 are the same handle. MPI_SIMILAR results if
the group members are the same but the order is different.
MPI_UNEQUAL results otherwise.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Communicator Functions

●	 MPI_Comm_dup(MPI_Comm comm, MPI_Comm

*newcomm)

●	 MPI_Comm_create(MPI_Comm comm, MPI_Group group,
MPI_Comm *newcomm)

●	 MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)

●	 MPI_Comm_compare(MPI_Comm comm1,MPI_Comm
comm2, int *result)

●	 MPI_Comm_free(MPI_Comm *comm)

●	 And the MPI_Comm_size,MPI_Comm_rank we have already
met.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Inter-Communicators

●	 So far all communications have been between

processes belonging to the same communicator.

●	 MPI allows for communications between different
communicators.
●	 They can only be Pt2Pt and not collective

●	 They require the generation of inter-communicator objects.

●	 For more look at the material on the Web and the standard.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Virtual Topologies

●	 Employing the information cached in communicators

we can map an (intra-)communicator's processes to an
underlying topology (cartesian or graph) that better
reflects the communication requirements of our
algorithm.

●	 This has possible performance advantages: The
process to hardware mapping could be thus more
optimal. In practice this is rare.

●	 The notational power of this approach however allows
 code to be far more readable and maintainable.

Parallel Programming for Multicore Machines Using OpenMP and MPI

A cartesian topology

Parallel Programming for Multicore Machines Using OpenMP and MPI

0
(0,0)

3
(1,0)

6
(2,0)

9
(3,0)

10
(3,1)

7
(2,1)

4
(1,1)

1
(0,1)

2
(0,2)

5
(1,2)

8
(2,2)

11
(3,2)

Ranks and Cartesian process coordinates

Figure by MIT OpenCourseWare.

Cartesian topology calls

●	 MPI_Cart_create(MPI_Comm comm_old, int ndims, int

*dims, int *periods, int reorder, MPI_Comm *comm_cart)

● Extra processes get MPI_COMM_NULL for comm_cart

●	 MPI_Dims_create(int nnodes, int ndims, int *dims)

●	 If ndims(k) is set, this is a constraint

●	 For graphs, MPI_Graph_create(), same rules

●	 MPI_Topo_test(MPI_Comm comm, int *status)

● Returns MPI_CART, MPI_GRAPH, MPI_UNDEFINED

●	 MPI_Cartdim_get, MPI_Cart_get etc. for cartesian topologies

●	 MPI_Graphdim_get, MPI_Graph_get etc. for graphs

Parallel Programming for Multicore Machines Using OpenMP and MPI

Ranks in cartesian communicators

Parallel Programming for Multicore Machines Using OpenMP and MPI

0
(0,0)

6 5 47

10 9 811

2 1 03

3
(1,0)

6
(2,0)

9
(3,0)

10
(3,1)

7
(2,1)

4
(1,1)

1
(0,1)

2
(0,2)

5
(1,2)

8
(2,2)

11
(3,2)

Ranks and Cartesian process coordinates in comm_cart

Ranks in comm and comm_cart may differ, if recorder = 1 or .TRUE.
This reordering can allow MPI to optimize communications

Figure by MIT OpenCourseWare.

Cartesian rank/coordinate functions

●	 MPI_Cart_rank(MPI_Comm comm, int *coords, int *rank);

out of range values get shifted (periodic topos)

●	 MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims,
int *coords)

Parallel Programming for Multicore Machines Using OpenMP and MPI

0
(0,0)

3
(1,0)

6
(2,0)

9
(3,0)

10
(3,1)

7
(2,1)

4
(1,1)

1
(0,1)

2
(0,2)

5
(1,2)

8
(2,2)

11
(3,2)

MPI_Cart_coords

MPI_Cart_rank

Figure by MIT OpenCourseWare.

Cartesian shift

●	 MPI_Cart_shift(MPI_Comm comm, int direction, int disp, int

*rank_source, int *rank_dest)

● MPI_PROC_NULL for shifts at non-periodic boundaries

Parallel Programming for Multicore Machines Using OpenMP and MPI

0 3 6 9
(0,0) (1,0) (2,0) (3,0)

1 4 7 10
(0,1) (1,1) (2,1) (3,1)

2 5 8 11
(0,2) (1,2) (2,2) (3,2)

Figure by MIT OpenCourseWare.

Cartesian subspaces

Parallel Programming for Multicore Machines Using OpenMP and MPI

0
(0,0)

0
(0) 3

(1,0)

1
(1)

2
(2)

3
(3)

0
(0)

1
(1)

2
(2)

3
(3)

0
(0)

1
(1)

2
(2)

3
(3)

6
(2,0)

9
(3,0)

10
(3,1)

7
(2,1)

4
(1,1)

1
(0,1)

2
(0,2)

MPI_Cart_sub(comm_cart, remain_dims, comm_sub, ierror)

Rank and Cartesian process coordinates in comm_sub

5
(1,2)

8
(2,2)

11
(3,2)

(true, false)

Figure by MIT OpenCourseWare.

More functions

●	 MPI_Graph_neighbors_count(MPI_Comm comm, int

rank, int *nneighbors)

●	 MPI_Graph_neighbors(MPI_Comm comm, int rank,
int maxneighbors, int *neighbors)

●	 Used in that order to get the neighbors of a process in
a graph.

Parallel Programming for Multicore Machines Using OpenMP and MPI

Fortran binding issues

call MPI_GET_ADDRESS(buf,bufaddr, ierror) ditto...

call MPI_TYPE_CREATE_STRUCT(1,1, bufaddr,MPI_REAL,type,ierror) ditto...

call MPI_TYPE_COMMIT(type,ierror) ditto...

val_old = buf register = buf

val_old = register

call MPI_RECV(MPI_BOTTOM,1,type,...) ditto...

val_new = buf val_new = register

call MPI_IRECV(buf,..req) call MPI_IRECV(buf,..req) call
MPI_IRECV(buf,..req)

register = buf b1 = buf

call MPI_WAIT(req,..) call MPI_WAIT(req,..) call MPI_WAIT(req,..)

b1 = buf b1 = register

Parallel Programming for Multicore Machines Using OpenMP and MPI

Further Fortran issues
Basic vs. Extended Fortran Support
Strong typing in F90 a problem with choice args
A scalar should not be passed instead of a vector.
Extra work to code with KIND numerical types
MPI_IRECV(buf(a:b:c), ...)
Fortran derived datatypes require MPI equivalents
Problems with input arguments that are copied...

e.g. MPI_Recv with a buffer that was passed to the parent subroutine
as a section or an assumed shape array argument that is associated
with such a section.

Parallel Programming for Multicore Machines Using OpenMP and MPI

The MPI runtime

●	 Provides for process placement, execution & handling

●	 Handles signals (SIGKILL, SIGSUSP, SIGUSR1/2)

●	 Usually collects stdout and stderr, may propagate stdin

●	 May propagate environment variables

●	 May provide support for debugging, profiling, tracing

●	 May interface with a queuing system for better process
placement

●	 MPI-2 specifies (but doesn't require) standardized mpirun
clone: mpiexec. Others: poe, mpprun, prun...

●	 Command line arguments and/or environment variables allow
for different behavior/performance

Parallel Programming for Multicore Machines Using OpenMP and MPI

MPI environment

●	 Initialize, Finalize and Abort functionality

●	 Error (exception) handling

●	 Other inquiry functions:
● double MPI_Wtime(void), double MPI_Wtick(void)

●	 MPI_WTIME_IS_GLOBAL

● MPI_Get_processor_name(char *name, int *resultlen)

●	 MPI communicator inquiry (size, rank) for
MPI_COMM_WORLD

Parallel Programming for Multicore Machines Using OpenMP and MPI

Exceptions

●	 Use exceptions and MPI return codes!

●	 Default error handler: MPI_ERRORS_ARE_FATAL

●	 The handler, when called, causes the program to abort on all
executing processes. This has the same effect as if
MPI_ABORT was called by the process that invoked the
handler.

●	 Alternative: MPI_ERRORS_RETURN

●	 The handler has no effect other than returning the error code to
the user. Put checks for the error codes in your source!

●	 MPICH provides two more:

● MPE_Errors_call_dbx_in_xterm, MPE_Signals_call_debugger

Parallel Programming for Multicore Machines Using OpenMP and MPI

Error Handling

●	 Environment Error handling routines:

●	 MPI_Errhandler_create(MPI_Handler_function *function,
MPI_Errhandler *errhandler)

●	 MPI_Errhandler_set(MPI_Comm comm, MPI_Errhandler
errhandler)

●	 MPI_Errhandler_get(MPI_Comm comm, MPI_Errhandler
*errhandler)

●	 MPI_Errhandler_free(MPI_Errhandler *errhandler)

●	 MPI_Error_string(int errorcode, char *string, int

*resultlen)

●	 MPI_Error_class(int errorcode, int *errorclass)

Parallel Programming for Multicore Machines Using OpenMP and MPI

The MPI Profiling Interface

●	 The MPI standard takes great pains to offer a specification for

a useful profiling interface that does has minimum overhead
and high flexibility.

●	 All MPI calls have a shifted name of PMPI_... instead of
MPI_...

●	 A profiling library can write it's own MPI_... call, calling the
corresponding PMPI_... call to actually do the message
passing.

●	 This provides a way to trace as well as profile in terms of cost
in time a parallel program's execution for performance or
debugging reasons.

Parallel Programming for Multicore Machines Using OpenMP and MPI

MPI Profiling & Performance Tools

● An extremely wide choice of tools:

● Research codes:

● AIMS (NASA Ames)
● (sv)Pablo (UIUC)
● Paradyn/Dyninst (University of Wisconsin)
● TAU (University of Oregon)
● XMPI (Indiana University)
● MPE/Jumpshot (ANL)
● Paragraph/MPICL
● FPMPI
● Also lightweight statistics tools: mpiP, ipm

● Commercial tools (VT, speedshop, Intel Trace A/C, VAMPIR)

Parallel Programming for Multicore Machines Using OpenMP and MPI

XMPI

●	 Works with LAM/MPI, could work with other

implementations.

●	 A GUI for launching MPI parallel programs, monitoring them
in real time and also do post-mortem analysis on them.

●	 Uses the slower "daemon" mode of LAM, provides individual
message detail and has multiple views. The daemon mode
allows cmdline tracing tools mpimsg and mpitask to be more
informative

●	 Very easy to use but non-daemon mode is required for
performance tuning. Launch with -ton and collect tracefile
with lamtrace

Parallel Programming for Multicore Machines Using OpenMP and MPI

XMPI in action

Parallel Programming for Multicore Machines Using OpenMP and MPI

Green: Represents the length of time a process runs outside of MPI.

Red: Represents the length of time a process is blocked, waiting for
communication to finish before the process resumes execution.

Yellow: Represents a process's overhead time inside MPI (for example, time
spent doing message packing).

MPE (from MPICH/MPICH2)

● Set of utility routines, including graphics

● Graphical viewing of traces with (n)upshot, jumpshot

● Compile with -mpe=mpitrace to enable basic tracing
● A message printed to stdout at every entry and exit

● Compile with -mpe=mpilog to enable logging
● ALOG, CLOG, CLOG2, UTE, SLOG and SLOG2 format

● Converters between formats (eg. Clog2slog2)

● SLOG2 is the newest and most scalable

● Jumpshot-4 is needed for looking at SLOG2 files

Parallel Programming for Multicore Machines Using OpenMP and MPI

Parallel Programming for Multicore Machines Using OpenMP and MPI

Jumpshot

l Programming for Multicore Machines Using OpenMP and MPI ce107@com

More Jumpshot

Paralle

Even more Jumpshot

Parallel Programming for Multicore Machines Using OpenMP and MPI

MIT OpenCourseWare
http://ocw.mit.edu

12.950 Parallel Programming for Multicore Machines Using OpenMP and MPI
IAP 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Agenda
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Motivation
	What DD
	DD example
	DD details
	extent
	contig
	vector
	indexed
	struct
	align
	address
	correct
	Creation
	equivalent types
	match2
	count
	example
	Complex Example
	G-C-C
	GConstr
	OtherGr
	Communicators
	Inter-Communicators
	VT
	cartesian
	cart functions
	ranks
	rfunc
	shift
	part
	More functions
	Slide 37
	Slide 38
	runtime
	environment
	Exception
	ExcRout
	Profiling
	ProfTools
	XMPI
	XMPIScr
	MPE
	Jumpshot
	Jumpshot 2
	Jumpshot 3

