B Holmstrom

14.124

Spring 2003
HOMEWORK 3 - due March 11, before class.
NOTE: Only questions 1-3 will be graded (and counted as part of the homework grade). The other problems are extra and will be discussed in the recitation.

Question 1. Problem 14. B. 4 (only parts a-c)
Question 2
In the linear incentive model, $w(x)=\alpha x+\beta$, the cost function of the agent is $c(e, s)=1 / 2(e+s)^{2}-s$, where e is time put into working for the principal and s is time spent with family and friends. The negative sign in front of s comes from the fact that the agent values time spent with family and friends. The agent's utility function is exponential with risk aversion coefficient $r=2$. Output from work is $\mathrm{x}=\mathrm{e}+\theta$, where θ is Normally distributed with mean zero and variance 4 .
a. Suppose the incentive coefficient $\alpha=.3$ How much time will the agent spend on family and friends?
b. Suppose the principal can set $\mathrm{s}=0$ by asking the agent to come to the office each day. What is the optimal choice of α in that case?
c. Suppose the agent's best alternative to working for the principal is spending time with family and friends. What will the principal have to pay the agent as a fixed salary (β) in part b ?

Question 3

This question is about optimal contracting in a principal-agent model with uniform distribution function. Let the production technology be described by $x=e+\theta$. The agent chooses "effort" e privately (the principal cannot observe e). The principal observes x , which therefore can be used as a basis for contracting. Assume θ is distributed uniformly on $[0,1]$. The agent's utility function takes the form $\mathrm{U}(\mathrm{m}, \mathrm{e})=\mathrm{u}(\mathrm{m})-\mathrm{c}(\mathrm{e})$, over money m and effort e . Here u is concave, c is convex, and both are increasing functions. The principal is risk neutral.
a. What is the first-best contract (ie the contract when e can be observed and contracted on)?
b. Show that the first-best outcome can be achieved even when e is not observed by the principal. That is, show that in the special case of a uniform distribution the principalagent problem does not entail any welfare loss relative to the first-best.

QUESTION 4. (extra).
An agent has utility function $\mathrm{u}(\mathrm{x})=\operatorname{sqrt}(\mathrm{x})-\mathrm{c}$, where sqrt stands for square root, x is money and c is the choice (and cost) of effort. Effort cannot be observed. If the agent chooses effort $\mathrm{c}=1.5$, the outcome is 200 half the time and 0 the rest of the time. If the agent chooses $c=2.5$, the outcome is 200 with probability .7 and zero with probability .3 . These two c-values are the agent's only feasible choices. The agent's best market alternative is to work for a pay of $w=9$ at the $\operatorname{cost} \mathrm{c}=0$. The principal is risk neutral and owns the technology.
a. Suppose the principal wants to implement $\mathrm{c}=1.5$. What contract should the principal offer to the agent? (Note that any contract has to pay non-negative wages in both states, because of the square root utility function).
b. Suppose the principal wants to implement $\mathrm{c}=2.5$. What is the principal's best contract offer in this case? Comparing answers a and b , what will be the best contract for the principal?
c. Change the problem slightly and assume that if the agent chooses $\mathrm{c}=1.5$, the two possible outcomes are: 200 with probability .5 and -5 with probability .5 . If the agent chooses $\mathrm{c}=2.5$, the outcomes and probabilities are as specified before. Argue that the principal can do no worse in this case than in the original case. Can the principal do better? (Hint: Argue first that whenever the outcome is -5 , the agent should be paid 0 .)

