
6.207/14.15: Networks	 Additional Problems Friday, November 6, 2009 

Problem 1. (Multitype Erdös- Rényi) 
Consider the following multitype generalization of the Erd¨ enyi random graph model.os-R´

•	 Nodes are of two types, type a and type b. 

•	 Fraction f of the nodes are type a, that is we have f n nodes of type a and (1 − f )n nodes of type b. 

•	 For each pair of nodes i, j , the edge (i, j) is present, independent from the presence or absence of other 
edges, with probability pij given by: ⎧
⎪⎪⎪⎪⎪ λa if both i, j are of type a.


n⎨ 
pi,j = ⎪⎪⎪⎪⎪

λ

n
b if both i, j are of type b. 

⎩ λ0 if i and j are of different types.
n 

What is the degree distribution of an agent of type a? What is the average degree distribution? Can you 
find a threshold for a k node complete graph to emerge in population a but not in population b ? Explain. 

Problem 2. (Navigating a Structured Network on a Hypercube) 
Consider a network in which each individual has a binary code represented by a vector of length K. An 
individual with a given code is linked to all other individuals with exactly same code and also to those 
who have codes that differ by one entry. Thus, the network can be thought as a hypercube or a regular 
lattice. So, for instance if K = 4, then an individual with code (0, 1, 0, 0) is connected to individuals of the 
same type as well as individuals of types (0, 0, 0, 0), (1, 1, 0, 0), (0, 1, 1, 0) and (0, 1, 0, 1). Assume that there 
are m individuals with each code. Calculate the average distance in (shortest) path length between two 
nodes picked uniformly at random (allowing for the second node to be identical to the first). How does the 
average distance vary with the number of individuals in the society n = m2K? How does average degree 
grow in this network? Compare the average degree and distance of this model and the small world model 
discussed in class (2-D grid model for α = 2). 

Problem 3. (Sequential Duel) 
In a sequential duel, two people alternatively have the opportunity to shoot each other; each has an infinite 
supply of bullets. On each of her turns, a person may shoot or refrain from doing so. Each of person i’s shots 
hits (and kills) its target with probability pi (independent of whether any other shots hit their targets). Each 
person cares about her probability of survival (not about the other person’s survival). Model this situation 
as an extensive game with perfect information and chance moves. Show that the strategy pairs in which 
neither person ever shoots and in which each person always shoots are both subgame perfect equilibria 
(note that the game does not have a finite horizon, so backward induction cannot be used). 

Problem 4. (Choosing the estate tax rate as an extensive form game) 
Senate is to choose the estate tax rate x ∈ X = {0, 0.01, 0.02, ..., 0.99, 1}. There are 45 hard-core Repub
licans, represented by the Majority Leader, 40 hard-core Democrats, represented by the Minority Leader, 
and 14 Moderates, represented by the Moderate Leader. The payoff of Republicans is 1 − x; the payoff of 
Democrats is x, and the payoff of Moderates is x if x ≤ 1/2 and 1 − x if x ≥ 1/2. The current estate tax rate 
is x0 = 0.6 (i.e., 60%). 
First, the Majority Leader introduces a bill x1 ∈ X. Then, the Minority Leader introduces an amendment 
x2 ∈ X. According to the Senate rules, first the amendment x2 is voted against the bill x1 and the winner 
of these two is voted against x0. The winner of the last vote is introduced as the estate tax rate. The winner 
in each vote is the alternative that collects 50 or more votes. In each vote, first the Majority Leader votes 
for all the hard-core Republicans, then the Minority Leader votes for the hard-core Democrats, and finally 
the Moderate Leader votes for the Moderates. Use backwards induction to compute an equilibrium of this 
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game. [You can restrict your attention to the case x1 ≤ 0.5 ≤ x2; you dont need to describe entire strategy, 
but you need to determine the outcomes of the votes, x2 as a function of x1, and x1.] 

Problem 5. Consider three parties choosing their location on an ideological space represented by [0, 1]. 
Voters are uniformly distributed over [0, 1] and each voter will vote for the closest party. The parties max
imize their vote share (the share of total voters voting for them). Show that there does not exist a pure 
strategy equilibrium. 

Problem 6. (The Colonel Blotto Game) 
Two armies are fighting a war. There are three battlefields. Each army consists of six units. The armies 
must each decide how many units to place on each battlefield. They do this without knowing the number 
of units that the other army has committed to a given battlefield. The army who has the most units on a 
given battlefield wins that battle, and the army that wins the most battles wins the war. If the armies each 
have the same number of units on a given battlefield, then there is an equal chance that either army wins 
that battle. A pure strategy for an army is a list (u1, u2, u3) of the number of units it places on battlefields 
1, 2, and 3, respectively, where each uk is in 0, 1, . . . , 6 and the sum of the uk s is 6. For example, if army A 
allocates its units (3, 2, 1), and army B allocates its units (0, 3, 3), then army A wins the first battle, army B 
wins the second and third battles, and army B wins the war. 

1. Argue that there is no pure strategy Nash equilibrium in this game. 

2. Show that mixing uniformly at random over all possible configurations of units is not a mixed strategy 
Nash equilibrium. (Hint: placing all units on one battlefield is not a good idea). 

3. Show that each army mixing with equal probability between (0, 3, 3), (3, 0, 3), and (3, 3, 0) is not an 
equilibrium. 
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