6.207/14.15: Networks
 Lecture 3: Erdös-Renyi graphs and Branching processes

Daron Acemoglu and Asu Ozdaglar MIT

September 16, 2009

Outline

- Erdös-Renyi random graph model
- Branching processes
- Phase transitions and threshold function
- Connectivity threshold

Reading:

- Jackson, Sections 4.1.1 and 4.2.1-4.2.3.

Erdös-Renyi Random Graph Model

- We use $G(n, p)$ to denote the undirected Erdös-Renyi graph.
- Every edge is formed with probability $p \in(0,1)$ independently of every other edge.
- Let $l_{i j} \in\{0,1\}$ be a Bernoulli random variable indicating the presence of edge $\{i, j\}$.
- For the Erdös-Renyi model, random variables $l_{i j}$ are independent and

$$
I_{i j}=\left\{\begin{array}{l}
1 \\
0 \quad \text { with probability } p \\
0
\end{array}\right.
$$

- $\mathbb{E}[$ number of edges $]=E\left[\sum I_{i j}\right]=\frac{n(n-1)}{2} p$
- Moreover, using weak law of large numbers, we have for all $\alpha>0$

$$
\mathbb{P}\left(\left|\sum \iota_{i j}-\frac{n(n-1)}{2} p\right| \geq \alpha \frac{n(n-1)}{2}\right) \rightarrow 0
$$

as $n \rightarrow \infty$. Hence, with this random graph model, the number of edges is a random variable, but it is tightly concentrated around its mean for large n.

Properties of Erdös-Renyi model

- Recall statistical properties of networks:
- Degree distributions
- Clustering
- Average path length and diameter
- For Erdös-Renyi model:
- Let D be a random variable that represents the degree of a node.
- D is a binomial random variable with $\mathbb{E}[D]=(n-1)$ p, i.e., $\mathbb{P}(D=d)=\binom{n-1}{d} p^{d}(1-p)^{n-1-d}$.
- Keeping the expected degree constant as $n \rightarrow \infty, D$ can be approximated with a Poisson random variable with $\lambda=(n-1) p$,

$$
\mathbb{P}(D=d)=\frac{e^{-\lambda} \lambda^{d}}{d!}
$$

hence the name Poisson random graph model.

- This degree distribution falls off faster than an exponential in d, hence it is not a power-law distribution.
- Individual clustering coefficient $\equiv C l_{i}(p)=p$.
- Interest in $p(n) \rightarrow 0$ as $n \rightarrow \infty$, implying $C l_{i}(p) \rightarrow 0$.
- Diameter:?

Other Properties of Random Graph Models

- Other questions of interest:
- Does the graph have isolated nodes? cycles? Is it connected?
- For random graph models, we are interested in computing the probabilities of these events, which may be intractable for a fixed n.
- Therefore, most of the time, we resort to an asymptotic analysis, where we compute (or bound) these probabilities as $n \rightarrow \infty$.
- Interestingly, often properties hold with either a probability approaching 1 or a probability approaching 0 in the limit.
- Consider an Erdös-Renyi model with link formation probability $p(n)$ (again interest in $p(n) \rightarrow 0$ as $n \rightarrow \infty)$.

- The graph experiences a phase transition as a function of graph parameters (also true for many other properties).

Branching Processes

- To analyze phase transitions, we will make use of branching processes.
- The Galton-Watson Branching process is defined as follows:
- Start with a single individual at generation $0, Z_{0}=1$.
- Let Z_{k} denote the number of individuals in generation k.
- Let ξ be a nonnegative discrete random variable with distribution p_{k}, i.e.,

$$
P(\xi=k)=p_{k}, \quad \mathbb{E}[\xi]=\mu, \quad \operatorname{var}(\xi) \neq 0 .
$$

- Each individual has a random number of children in the next generation, which are independent copies of the random variable ξ.
- This implies that

$$
Z_{1}=\xi, \quad Z_{2}=\sum_{i=1}^{Z_{1}} \xi^{(i)} \text { (sum of random number of rvs). }
$$

and therefore,

$$
\mathbb{E}\left[Z_{1}\right]=\mu, \quad \mathbb{E}\left[Z_{2}\right]=\mathbb{E}\left[\mathbb{E}\left[Z_{2} \mid Z_{1}\right]\right]=\mathbb{E}\left[\mu Z_{1}\right]=\mu^{2}
$$

and $\mathbb{E}\left[Z_{n}\right]=\mu^{n}$.

Branching Processes (Continued)

- Let Z denote the total number of individuals in all generations, $Z=\sum_{n=1}^{\infty} Z_{n}$.
- We consider the events $Z<\infty$ (extinction) and $Z=\infty$ (survive forever).
- We are interested in conditions and with what probabilities these events occur.
- Two cases:
- Subcritical $(\mu<1)$ and supercritical $(\mu>1)$
- Subcritical: $\mu<1$
- Since $\mathbb{E}\left[Z_{n}\right]=\mu^{n}$, we have

$$
\mathbb{E}[Z]=\mathbb{E}\left[\sum_{n=1}^{\infty} Z_{n}\right]=\sum_{n=1}^{\infty} \mathbb{E}\left[Z_{n}\right]=\frac{1}{1-\mu}<\infty
$$

(some care is needed in the second equality).

- This implies that $Z<\infty$ with probability 1 and $\mathbb{P}($ extinction $)=1$.

Branching Processes (Continued)

Supercritical: $\mu>1$
Recall $p_{0}=\mathbb{P}(\xi=0)$. If $p_{0}=0$, then $\mathbb{P}($ extinction $)=0$.
Assume $p_{0}>0$.
We have $\rho=\mathbb{P}($ extinction $) \geq \mathbb{P}\left(Z_{1}=0\right)=p_{0}>0$.
We can write the following fixed-point equation for ρ :

$$
\rho=\sum_{k=0}^{\infty} p_{k} \rho^{k}=\mathbb{E}\left[\rho^{\xi}\right] \equiv \Phi(\rho)
$$

We have $\Phi(0)=p_{0}$ (using convention $0^{0}=1$) and $\Phi(1)=1$
Φ is a convex function $\left(\Phi^{\prime \prime}(\rho) \geq 0\right.$ for all $\left.\rho \in[0,1]\right)$, and $\Phi^{\prime}(1)=\mu>1$.

Figure: The generating function Φ has a unique fixed point $\rho^{*} \in[0,1)$.

Phase Transitions for Erdös-Renyi Model

- Erdös-Renyi model is completely specified by the link formation probability $p(n)$.
- For a given property A (e.g. connectivity), we define a threshold function $t(n)$ as a function that satisfies:

$$
\begin{aligned}
\mathbb{P}(\text { property } A) \rightarrow 0 & \text { if } \quad \frac{p(n)}{t(n)} \rightarrow 0, \text { and } \\
\mathbb{P}(\text { property } A) \rightarrow 1 & \text { if } \frac{p(n)}{t(n)} \rightarrow \infty
\end{aligned}
$$

- This definition makes sense for "monotone or increasing properties," i.e., properties such that if a given network satisfies it, any supernetwork (in the sense of set inclusion) satisfies it.
- When such a threshold function exists, we say that a phase transition occurs at that threshold.
- Exhibiting such phase transitions was one of the main contributions of the seminal work of Erdös and Renyi 1959.

Phase Transition Example

- Define property A as $A=\{$ number of edges $>0\}$.
- We are looking for a threshold for the emergence of the first edge.
- Recall \mathbb{E} [number of edges] $=\frac{n(n-1)}{2} p(n) \approx \frac{n^{2}}{2} p(n)$.
- Assume $\frac{p(n)}{2 / n^{2}} \rightarrow 0$ as $n \rightarrow \infty$. Then, $\mathbb{E}[$ number of edges $] \rightarrow 0$, which implies that $\mathbb{P}($ number of edges $>0) \rightarrow 0$.
- Assume next that $\frac{p(n)}{2 / n^{2}} \rightarrow \infty$ as $n \rightarrow \infty$. Then, $\mathbb{E}[$ number of edges $] \rightarrow \infty$.
- This does not in general imply that \mathbb{P} (number of edges $>0) \rightarrow 1$.
- Here it follows because the number of edges can be approximated by a Poisson distribution (just like the degree distribution), implying that

$$
\mathbb{P}(\text { number of edges }=0)=\left.\frac{e^{-\lambda} \lambda^{k}}{k!}\right|_{k=0}=e^{-\lambda}
$$

- Since the mean number of edges, given by λ, goes to infinity as $n \rightarrow \infty$, this implies that $\mathbb{P}($ number of edges $>0) \rightarrow 1$.

Phase Transitions

- Hence, the function $t(n)=1 / n^{2}$ is a threshold function for the emergence of the first link, i.e.,
- When $p(n) \ll 1 / n^{2}$, the network is likely to have no edges in the limit, whereas when $p(n) \gg 1 / n^{2}$, the network has at least one edge with probability going to 1 .
- How large should $p(n)$ be to start observing triples in the network?
- We have \mathbb{E} [number of triples] $=n^{3} p^{2}$, using a similar analysis we can show $t(n)=\frac{1}{n^{3 / 2}}$ is a threshold function.
- How large should $p(n)$ be to start observing a tree with k nodes (and $k-1$ arcs)?
- We have \mathbb{E} [number of trees] $=n^{k} p^{k-1}$, and the function $t(n)=\frac{1}{n^{k / k-1}}$ is a threshold function.
- The threshold function for observing a cycle with k nodes is $t(n)=\frac{1}{n}$
- Big trees easier to get than a cycle with arbitrary size!

Phase Transitions (Continued)

- Below the threshold of $1 / n$, the largest component of the graph includes no more than a factor times $\log (n)$ of the nodes.
- Above the threshold of $1 / n$, a giant component emerges, which is the largest component that contains a nontrivial fraction of all nodes, i.e., at least $c n$ for some constant c.
- The giant component grows in size until the threshold of $\log (n) / n$, at which point the network becomes connected.

Phase Transitions (Continued)

Figure: A first component with more than two nodes: a random network on 50 nodes with $p=0.01$.

Phase Transitions (Continued)

Figure: Emergence of cycles: a random network on 50 nodes with $p=0.03$.

Phase Transitions (Continued)

Figure: Emergence of a giant component: a random network on 50 nodes with $p=0.05$.

Phase Transitions (Continued)

Figure: Emergence of connectedness: a random network on 50 nodes with $p=0.10$.

Threshold Function for Connectivity

Theorem

(Erdös and Renyi 1961) A threshold function for the connectivity of the Erdös and Renyi model is $t(n)=\frac{\log (n)}{n}$.

- To prove this, it is sufficient to show that when $p(n)=\lambda(n) \frac{\log (n)}{n}$ with $\lambda(n) \rightarrow 0$, we have \mathbb{P} (connectivity) $\rightarrow 0$ (and the converse).
- However, we will show a stronger result: Let $p(n)=\lambda \frac{\log (n)}{n}$.

$$
\begin{array}{ll}
\text { If } \lambda<1, & \mathbb{P}(\text { connectivity }) \rightarrow 0 \\
\text { If } \lambda>1, & \mathbb{P}(\text { connectivity }) \rightarrow 1 \tag{2}
\end{array}
$$

Proof:

- We first prove claim (1). To show disconnectedness, it is sufficient to show that the probability that there exists at least one isolated node goes to 1 .

Proof (Continued)

- Let I_{i} be a Bernoulli random variable defined as

$$
I_{i}=\left\{\begin{array}{cc}
1 & \text { if node } i \text { is isolated } \\
0 & \text { otherwise }
\end{array}\right.
$$

- We can write the probability that an individual node is isolated as

$$
\begin{equation*}
q=\mathbb{P}\left(l_{i}=1\right)=(1-p)^{n-1} \approx e^{-p n}=e^{-\lambda \log (n)}=n^{-\lambda} \tag{3}
\end{equation*}
$$

where we use $\lim _{n \rightarrow \infty}\left(1-\frac{a}{n}\right)^{n}=e^{-a}$ to get the approximation.

- Let $X=\sum_{i=1}^{n} l_{i}$ denote the total number of isolated nodes. Then, we have

$$
\begin{equation*}
\mathbb{E}[X]=n \cdot n^{-\lambda} \tag{4}
\end{equation*}
$$

- For $\lambda<1$, we have $\mathbb{E}[X] \rightarrow \infty$. We want to show that this implies $\mathbb{P}(X=0) \rightarrow 0$.
- In general, this is not true.
- Can we use a Poisson approximation (as in the previous example)? No, since the random variables I_{i} here are dependent.
- We show that the variance of X is of the same order as its mean.

Proof (Continued)

- We compute the variance of $X, \operatorname{var}(X)$:

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{i} \operatorname{var}\left(l_{i}\right)+\sum_{i} \sum_{j \neq i} \operatorname{cov}\left(l_{i}, l_{j}\right) \\
& =n \operatorname{var}\left(l_{1}\right)+n(n-1) \operatorname{cov}\left(l_{1}, l_{2}\right) \\
& =n q(1-q)+n(n-1)\left(\mathbb{E}\left[l_{1} I_{2}\right]-\mathbb{E}\left[I_{1}\right] \mathbb{E}\left[l_{2}\right]\right),
\end{aligned}
$$

where the second and third equalities follow since the I_{i} are identically distributed Bernoulli random variables with parameter q (dependent).

- We have

$$
\begin{aligned}
\mathbb{E}\left[I_{1} I_{2}\right] & =\mathbb{P}\left(I_{1}=1, I_{2}=1\right)=\mathbb{P}(\text { both } 1 \text { and } 2 \text { are isolated }) \\
& =(1-p)^{2 n-3}=\frac{q^{2}}{(1-p)} .
\end{aligned}
$$

- Combining the preceding two relations, we obtain

$$
\begin{aligned}
\operatorname{var}(X) & =n q(1-q)+n(n-1)\left[\frac{q^{2}}{(1-p)}-q^{2}\right] \\
& =n q(1-q)+n(n-1) \frac{q^{2} p}{1-p} .
\end{aligned}
$$

Proof (Continued)

- For large n, we have $q \rightarrow 0$ [cf. Eq. (3)], or $1-q \rightarrow 1$. Also $p \rightarrow 0$. Hence,

$$
\begin{aligned}
\operatorname{var}(X) & \sim n q+n^{2} q^{2} \frac{p}{1-p} \sim n q+n^{2} q^{2} p \\
& =n n^{-\lambda}+\lambda n \log (n) n^{-2 \lambda} \\
& \sim n n^{-\lambda}=\mathbb{E}[X]
\end{aligned}
$$

where $a(n) \sim b(n)$ denotes $\frac{a(n)}{b(n)} \rightarrow 1$ as $n \rightarrow \infty$.

- This implies that

$$
\mathbb{E}[X] \sim \operatorname{var}(X) \geq(0-\mathbb{E}[X])^{2} \mathbb{P}(X=0)
$$

and therefore,

$$
\mathbb{P}(X=0) \leq \frac{\mathbb{E}[X]}{\mathbb{E}[X]^{2}}=\frac{1}{\mathbb{E}[X]} \rightarrow 0
$$

- It follows that \mathbb{P} (at least one isolated node) $\rightarrow 1$ and therefore, \mathbb{P} (disconnected) $\rightarrow 1$ as $n \rightarrow \infty$, completing the proof.

Converse

- We next show claim (2), i.e., if $p(n)=\lambda \frac{\log (n)}{n}$ with $\lambda>1$, then \mathbb{P} (connectivity) $\rightarrow 1$, or equivalently \mathbb{P} (disconnectivity) $\rightarrow 0$.
- From Eq. (4), we have $\mathbb{E}[X]=n \cdot n^{-\lambda} \rightarrow 0$ for $\lambda>1$.
- This implies probability of isolated nodes goes to 0 . However, we need more to establish connectivity.
- The event "graph is disconnected" is equivalent to the existence of k nodes without an edge to the remaining nodes, for some $k \leq n / 2$.
- We have

$$
\mathbb{P}(\{1, \ldots, k\} \text { not connected to the rest })=(1-p)^{k(n-k)},
$$

and therefore,

$$
\mathbb{P}(\exists \mathrm{k} \text { nodes not connected to the rest })=\binom{n}{k}(1-p)^{k(n-k)} .
$$

Converse (Continued)

- Using the union bound [i.e. $\mathbb{P}\left(\cup_{i} A_{i}\right) \leq \sum_{i} \mathbb{P}\left(A_{i}\right)$], we obtain

$$
\mathbb{P}(\text { disconnected graph }) \leq \sum_{k=1}^{n / 2}\binom{n}{k}(1-p)^{k(n-k)} .
$$

- Using Stirling's formula $k!\sim\left(\frac{k}{e}\right)^{k}$, which implies $\binom{n}{k} \leq \frac{n^{k}}{\left(\frac{k}{e}\right)^{k}}$ in the preceding relation and some (ugly) algebra, we obtain

$$
\mathbb{P}(\text { disconnected graph }) \rightarrow 0,
$$

completing the proof.

MIT OpenCourseWare
http://ocw.mit.edu

14.15J / 6.207J Networks

Fall 2009

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

