6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes

Daron Acemoglu and Asu Ozdaglar MIT

September 16, 2009

Outline

- Erdös-Renyi random graph model
- Branching processes
- Phase transitions and threshold function
- Connectivity threshold

Reading:

Jackson, Sections 4.1.1 and 4.2.1-4.2.3.

Erdös-Renyi Random Graph Model

- We use G(n, p) to denote the undirected Erdös-Renyi graph.
- Every edge is formed with probability $p \in (0, 1)$ independently of every other edge.
- Let $I_{ii} \in \{0,1\}$ be a Bernoulli random variable indicating the presence of edge $\{i, j\}$.
- For the Erdös-Renyi model, random variables I_{ii} are independent and

$$I_{ij} = \left\{egin{array}{cc} 1 & ext{with probability } p, \ 0 & ext{with probability } 1-p. \end{array}
ight.$$

- $\mathbb{E}[\text{number of edges}] = E[\sum I_{ii}] = \frac{n(n-1)}{2}p$
- Moreover, using weak law of large numbers, we have for all $\alpha > 0$

$$\mathbb{P}\left(\left|\sum l_{ij}-\frac{n(n-1)}{2}p\right|\geq \alpha \frac{n(n-1)}{2}\right)\to 0,$$

as $n \to \infty$. Hence, with this random graph model, the number of edges is a random variable, but it is tightly concentrated around its mean for large n.

Introduction

Properties of Erdös-Renyi model

- Recall statistical properties of networks:
 - Degree distributions
 - Clustering
 - Average path length and diameter
- For Erdös-Renyi model:
 - Let D be a random variable that represents the degree of a node.
 - *D* is a binomial random variable with $\mathbb{E}[D] = (n-1)p$, i.e., $\mathbb{P}(D = d) = \binom{n-1}{d} p^d (1-p)^{n-1-d}.$
 - Keeping the expected degree constant as $n \to \infty$, D can be approximated with a Poisson random variable with $\lambda = (n-1)p$,

$$\mathbb{P}(D=d)=\frac{e^{-\lambda}\lambda^d}{d!},$$

hence the name Poisson random graph model.

- This degree distribution falls off faster than an exponential in d, hence it is not a power-law distribution.
- Individual clustering coefficient $\equiv Cl_i(p) = p$.
 - Interest in $p(n) \rightarrow 0$ as $n \rightarrow \infty$, implying $Cl_i(p) \rightarrow 0$.
- Diameter:?

Introduction

Other Properties of Random Graph Models

- Other questions of interest:
 - Does the graph have isolated nodes? cycles? Is it connected?
- For random graph models, we are interested in computing the **probabilities of these events**, which may be intractable for a fixed *n*.
- Therefore, most of the time, we resort to an asymptotic analysis, where we compute (or bound) these probabilities as n → ∞.
- Interestingly, often properties hold with either a probability approaching 1 or a probability approaching 0 in the limit.
- Consider an Erdös-Renyi model with link formation probability p(n) (again interest in p(n) → 0 as n → ∞).

• The graph experiences a phase transition as a function of graph parameters (also true for many other properties).

Branching Processes

- To analyze phase transitions, we will make use of branching processes.
- The Galton-Watson Branching process is defined as follows:
- Start with a single individual at generation 0, $Z_0 = 1$.
- Let Z_k denote the number of individuals in generation k.
- Let ξ be a nonnegative discrete random variable with distribution p_k , i.e.,

$$P(\xi = k) = p_k, \qquad \mathbb{E}[\xi] = \mu, \qquad var(\xi) \neq 0.$$

- Each individual has a random number of children in the next generation, which are independent copies of the random variable ξ .
- This implies that

$$Z_1=\xi, \qquad Z_2=\sum_{i=1}^{Z_1}\xi^{(i)}(ext{sum of random number of rvs}).$$

and therefore.

an

$$\mathbb{E}[Z_1] = \mu, \quad \mathbb{E}[Z_2] = \mathbb{E}[\mathbb{E}[Z_2 \mid Z_1]] = \mathbb{E}[\mu Z_1] = \mu^2,$$

d $\mathbb{E}[Z_n] = \mu^n.$

Branching Processes (Continued)

- Let Z denote the total number of individuals in all generations, $Z = \sum_{n=1}^{\infty} Z_n$.
- We consider the events $Z < \infty$ (extinction) and $Z = \infty$ (survive forever).
- We are interested in conditions and with what probabilities these events occur.
- Two cases:
 - Subcritical ($\mu < 1$) and supercritical ($\mu > 1$)
- Subcritical: $\mu < 1$
- Since $\mathbb{E}[Z_n] = \mu^n$, we have

$$\mathbb{E}[Z] = \mathbb{E}\Big[\sum_{n=1}^{\infty} Z_n\Big] = \sum_{n=1}^{\infty} \mathbb{E}\Big[Z_n\Big] = \frac{1}{1-\mu} < \infty,$$

(some care is needed in the second equality).

• This implies that $Z < \infty$ with probability 1 and $\mathbb{P}(extinction) = 1$.

Branching Processes (Continued)

Supercritical: $\mu > 1$

Recall $p_0 = \mathbb{P}(\xi = 0)$. If $p_0 = 0$, then $\mathbb{P}(extinction) = 0$.

Assume $p_0 > 0$.

We have $\rho = \mathbb{P}(extinction) \ge \mathbb{P}(Z_1 = 0) = p_0 > 0$.

We can write the following fixed-point equation for ρ :

$$\rho = \sum_{k=0}^{\infty} p_k \rho^k = \mathbb{E}[\rho^{\xi}] \equiv \Phi(\rho).$$

We have $\Phi(0) = p_0$ (using convention $0^0 = 1$) and $\Phi(1) = 1$ Φ is a convex function $(\Phi''(\rho) \ge 0$ for all $\rho \in [0,1])$, and $\Phi'(1) = \mu > 1$.

Figure: The generating function Φ has a unique fixed point $\rho^* \in [0, 1)$.

Phase Transitions for Erdös-Renyi Model

- Erdös-Renyi model is completely specified by the link formation probability p(n).
- For a given property A (e.g. connectivity), we define a threshold function t(n) as a function that satisfies:

$$\mathbb{P}(ext{property } A) o 0 \quad ext{if} \quad rac{p(n)}{t(n)} o 0, ext{ and }$$
 $\mathbb{P}(ext{property } A) o 1 \quad ext{if} \quad rac{p(n)}{t(n)} o \infty.$

- This definition makes sense for "monotone or increasing properties," i.e., properties such that if a given network satisfies it, any supernetwork (in the sense of set inclusion) satisfies it.
- When such a threshold function exists, we say that a phase transition occurs at that threshold.
- Exhibiting such phase transitions was one of the main contributions of the seminal work of Erdös and Renyi 1959.

Phase Transition Example

- Define property A as $A = \{$ number of edges $> 0 \}$.
- We are looking for a threshold for the emergence of the first edge.
- Recall $\mathbb{E}[\text{number of edges}] = \frac{n(n-1)}{2}p(n) \approx \frac{n^2}{2}p(n)$.
- Assume $\frac{p(n)}{2/n^2} \to 0$ as $n \to \infty$. Then, $\mathbb{E}[\text{number of edges}] \to 0$, which implies that $\mathbb{P}(\text{number of edges} > 0) \rightarrow 0$.
- Assume next that $\frac{p(n)}{2/n^2} \to \infty$ as $n \to \infty$. Then, $\mathbb{E}[\text{number of edges}] \to \infty$.
- This does not in general imply that $\mathbb{P}(\text{number of edges} > 0) \rightarrow 1$.
- Here it follows because the number of edges can be approximated by a Poisson distribution (just like the degree distribution), implying that

$$\mathbb{P}(\text{number of edges} = 0) = \left. \frac{e^{-\lambda} \lambda^k}{k!} \right|_{k=0} = e^{-\lambda}.$$

• Since the mean number of edges, given by λ , goes to infinity as $n \to \infty$, this implies that $\mathbb{P}(\text{number of edges} > 0) \rightarrow 1$.

Phase Transitions

- Hence, the function $t(n) = 1/n^2$ is a threshold function for the emergence of the first link, i.e.,
 - When $p(n) \ll 1/n^2$, the network is likely to have no edges in the limit, whereas when $p(n) >> 1/n^2$, the network has at least one edge with probability going to 1.
- How large should p(n) be to start observing triples in the network?
 - We have $\mathbb{E}[$ number of triples $] = n^3 p^2$, using a similar analysis we can show $t(n) = \frac{1}{n^{3/2}}$ is a threshold function.
- How large should p(n) be to start observing a tree with k nodes (and k-1arcs)?
 - We have $\mathbb{E}[\text{number of trees}] = n^k p^{k-1}$, and the function $t(n) = \frac{1}{n^{k/k-1}}$ is a threshold function.
- The threshold function for observing a cycle with k nodes is $t(n) = \frac{1}{n}$
 - Big trees easier to get than a cycle with arbitrary size!

- Below the threshold of 1/n, the largest component of the graph includes no more than a factor times log(n) of the nodes.
- Above the threshold of 1/n, a giant component emerges, which is the largest component that contains a nontrivial fraction of all nodes, i.e., at least *cn* for some constant *c*.
- The giant component grows in size until the threshold of $\log(n)/n$, at which point the network becomes connected.

Figure: A first component with more than two nodes: a random network on 50 nodes with p = 0.01.

Figure: Emergence of cycles: a random network on 50 nodes with p = 0.03.

Figure: Emergence of a giant component: a random network on 50 nodes with p = 0.05.

Figure: Emergence of connectedness: a random network on 50 nodes with p = 0.10.

Threshold Function for Connectivity

Theorem

(Erdös and Renyi 1961) A threshold function for the connectivity of the Erdös and Renyi model is $t(n) = \frac{\log(n)}{n}$.

- To prove this, it is sufficient to show that when $p(n) = \lambda(n) \frac{\log(n)}{n}$ with $\lambda(n) \rightarrow 0$, we have $\mathbb{P}(\text{connectivity}) \rightarrow 0$ (and the converse).
- However, we will show a stronger result: Let $p(n) = \lambda \frac{\log(n)}{n}$.

$$\text{If } \lambda < 1, \qquad \mathbb{P}(\text{connectivity}) \to 0, \qquad \qquad (1)$$

If
$$\lambda > 1$$
, $\mathbb{P}(\text{connectivity}) \to 1$. (2)

Proof:

• We first prove claim (1). To show disconnectedness, it is sufficient to show that the probability that there exists at least one isolated node goes to 1.

Proof (Continued)

• Let I_i be a Bernoulli random variable defined as

$$I_i = \begin{cases} 1 & \text{if node } i \text{ is isolated,} \\ 0 & \text{otherwise.} \end{cases}$$

• We can write the probability that an individual node is isolated as

$$q = \mathbb{P}(I_i = 1) = (1 - p)^{n-1} \approx e^{-pn} = e^{-\lambda \log(n)} = n^{-\lambda},$$
 (3)

where we use $\lim_{n\to\infty}\left(1-\frac{a}{n}\right)^n=e^{-a}$ to get the approximation.

- Let $X = \sum_{i=1}^{n} I_i$ denote the total number of isolated nodes. Then, we have $\mathbb{E}[X] = n \cdot n^{-\lambda}$. (4)
- For $\lambda < 1$, we have $\mathbb{E}[X] \to \infty$. We want to show that this implies $\mathbb{P}(X = 0) \to 0$.
 - In general, this is not true.
 - Can we use a Poisson approximation (as in the previous example)? No, since the random variables *I_i* here are dependent.
 - We show that the variance of X is of the same order as its mean.

Introduction

Proof (Continued)

• We compute the variance of X, var(X):

$$\operatorname{var}(X) = \sum_{i} \operatorname{var}(I_{i}) + \sum_{i} \sum_{j \neq i} \operatorname{cov}(I_{i}, I_{j})$$

= $n\operatorname{var}(I_{1}) + n(n-1)\operatorname{cov}(I_{1}, I_{2})$
= $nq(1-q) + n(n-1)\left(\mathbb{E}[I_{1}I_{2}] - \mathbb{E}[I_{1}]\mathbb{E}[I_{2}]\right)$

where the second and third equalities follow since the I_i are identically distributed Bernoulli random variables with parameter q (dependent).

We have

$$\mathbb{E}[l_1 l_2] = \mathbb{P}(l_1 = 1, l_2 = 1) = \mathbb{P}(\text{both 1 and 2 are isolated})$$
$$= (1-p)^{2n-3} = \frac{q^2}{(1-p)}.$$

 Combining the preceding two relations, we obtain $\operatorname{var}(X) = nq(1-q) + n(n-1) \left[\frac{q^2}{(1-p)} - q^2 \right]$ $= nq(1-q) + n(n-1)\frac{q^2p}{1-p}.$

Proof (Continued)

• For large n, we have $q \to 0$ [cf. Eq. (3)], or $1 - q \to 1$. Also $p \to 0$. Hence,

$$\operatorname{var}(X) \sim nq + n^2 q^2 \frac{p}{1-p} \sim nq + n^2 q^2 p$$
$$= nn^{-\lambda} + \lambda n \log(n) n^{-2\lambda}$$
$$\sim nn^{-\lambda} = \mathbb{E}[X],$$

where $a(n) \sim b(n)$ denotes $\frac{a(n)}{b(n)} \to 1$ as $n \to \infty$.

This implies that

$$\mathbb{E}[X] \sim \operatorname{var}(X) \ge (0 - \mathbb{E}[X])^2 \mathbb{P}(X = 0),$$

and therefore,

$$\mathbb{P}(X=0) \leq \frac{\mathbb{E}[X]}{\mathbb{E}[X]^2} = \frac{1}{\mathbb{E}[X]} \to 0.$$

• It follows that $\mathbb{P}(\text{at least one isolated node}) \rightarrow 1$ and therefore, $\mathbb{P}(\text{disconnected}) \to 1 \text{ as } n \to \infty$, completing the proof.

Converse

- We next show claim (2), i.e., if $p(n) = \lambda \frac{\log(n)}{n}$ with $\lambda > 1$, then $\mathbb{P}(\text{connectivity}) \rightarrow 1$, or equivalently $\mathbb{P}(\text{disconnectivity}) \rightarrow 0$.
- From Eq. (4), we have $\mathbb{E}[X] = n \cdot n^{-\lambda} \to 0$ for $\lambda > 1$.
- This implies probability of isolated nodes goes to 0. However, we need more to establish connectivity.
- The event "graph is disconnected" is equivalent to the existence of k nodes without an edge to the remaining nodes, for some k < n/2.
- We have

$$\mathbb{P}(\{1,\ldots,k\}$$
 not connected to the rest $)=(1-p)^{k(n-k)}$,

and therefore.

$$\mathbb{P}(\exists \text{ k nodes not connected to the rest}) = \binom{n}{k} (1-p)^{k(n-k)}.$$

Converse (Continued)

• Using the union bound [i.e. $\mathbb{P}(\cup_i A_i) \leq \sum_i \mathbb{P}(A_i)$], we obtain

$$\mathbb{P}(\text{disconnected graph}) \leq \sum_{k=1}^{n/2} \binom{n}{k} (1-p)^{k(n-k)}.$$

• Using Stirling's formula $k! \sim \left(\frac{k}{e}\right)^k$, which implies $\binom{n}{k} \leq \frac{n^k}{(\frac{k}{e})^k}$ in the preceding relation and some (ugly) algebra, we obtain

 $\mathbb{P}(\mathsf{disconnected graph}) \to \mathsf{0},$

completing the proof.

MIT OpenCourseWare http://ocw.mit.edu

14.15J / 6.207J Networks Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.