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Erdös-Renyi random graph model 

Branching processes 

Phase transitions and threshold function 

Connectivity threshold 

Reading: 

Jackson, Sections 4.1.1 and 4.2.1-4.2.3. 
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Networks: Lecture 3 Introduction 

Erdös-Renyi Random Graph Model 

We use G (n, p) to denote the undirected Erdös-Renyi graph. 

Every edge is formed with probability p ∈ (0, 1) independently of every

other edge.


Let Iij ∈ {0, 1} be a Bernoulli random variable indicating the presence of

edge {i , j}.

For the Erdös-Renyi model, random variables Iij are independent and


1 with probability p,=Iij 0 with probability 1 − p. 

E[number of edges] = E [∑ Iij ] = n(n
2
−1) 

p 

Moreover, using weak law of large numbers, we have for all α > 0 

n(n − 1) 
2 

n(n − 1) 
2∑ Iij −P ≥ α 0,p →


as n ∞. Hence, with this random graph model, the number of edges is a →
random variable, but it is tightly concentrated around its mean for large n. 
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Networks: Lecture 3 Introduction 

Properties of Erdös-Renyi model 

Recall statistical properties of networks:


Degree distributions

Clustering

Average path length and diameter


For Erdös-Renyi model: 
Let D be a random variable that represents the degree of a node. 

D is a binomial random variable with E[D ] = (n − 1)p, i.e., 
P(D = d) = (n−1)pd (1 − p)n−1−d .d 
Keeping the expected degree constant as n ∞, D can be →
approximated with a Poisson random variable with λ = (n − 1)p, 

e−λλd 

P(D = d) = ,
d ! 

hence the name Poisson random graph model. 
This degree distribution falls off faster than an exponential in d , hence 
it is not a power-law distribution. 

Individual clustering coefficient≡ Cli (p) = p. 
Interest in p(n) 0 as n ∞, implying Cli (p) 0.→ → →

Diameter:? 
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Networks: Lecture 3 Introduction 

Other Properties of Random Graph Models 

Other questions of interest: 

Does the graph have isolated nodes? cycles? Is it connected? 

For random graph models, we are interested in computing the probabilities 
of these events, which may be intractable for a fixed n. 

Therefore, most of the time, we resort to an asymptotic analysis, where we 
compute (or bound) these probabilities as n ∞.→ 

Interestingly, often properties hold with either a probability approaching 1 or 
a probability approaching 0 in the limit. 

Consider an Erdös-Renyi model with link formation probability p(n) (again 
interest in p(n) → 0 as n → ∞). 
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The graph experiences a phase transition as a function of graph parameters 
(also true for many other properties). 
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Branching Processes 

To analyze phase transitions, we will make use of branching processes. 

The Galton-Watson Branching process is defined as follows: 

Start with a single individual at generation 0, Z0 = 1. 

Let Zk denote the number of individuals in generation k. 

Let ξ be a nonnegative discrete random variable with distribution pk , i.e., 

P(ξ = k) = pk , E[ξ] = µ, var (ξ) = 0. 

Each individual has a random number of children in the next generation, 
which are independent copies of the random variable ξ. 

This implies that 
Z1 

Z1 = ξ, Z2 = ∑ ξ(i )(sum of random number of rvs). 
i=1 

and therefore, 

E[Z1] = µ, E[Z2] = E[E[Z2 | Z1]] = E[µZ1] = µ 2 , 
nand E[Zn] = µ . 
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Networks: Lecture 3 Introduction 

Branching Processes (Continued) 

Let Z denote the total number of individuals in all generations, 
Z n=1 Zn.= ∑∞ 

We consider the events Z < ∞ (extinction) and Z = ∞ (survive 
forever). 
We are interested in conditions and with what probabilities these 
events occur. 
Two cases: 

Subcritical (µ < 1) and supercritical (µ > 1) 

Subcritical: µ < 1 
Since E[Zn] = µn, we have � ∞ � ∞ � � 1 

E[Z ] = E ∑ Zn = ∑ E Zn = < ∞, 
n=1 n=1 1 − µ 

(some care is needed in the second equality). 
This implies that Z < ∞ with probability 1 and P(extinction) = 1. 
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Branching Processes (Continued)

Supercritical: µ > 1

Recall p0 = P(ξ = 0). If p0 = 0, then P(extinction) = 0.

Assume p0 > 0.

We have ρ = P(extinction) ≥ P(Z1 = 0) = p0 > 0.

We can write the following fixed-point equation for ρ:

ρ =
∞

∑
k=0

pkρk = E[ρξ ] ≡ Φ(ρ).

We have Φ(0) = p0 (using convention 00 = 1) and Φ(1) = 1

Φ is a convex function (Φ′′(ρ) 0 for all ρ [0, 1]), and Φ′(1) = µ > 1.≥ ∈
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Figure: The generating function Φ has a unique fixed point ρ∗ ∈ [0, 1).
8



Networks: Lecture 3 Introduction 

Phase Transitions for Erdös-Renyi Model 

Erdös-Renyi model is completely specified by the link formation probability 
p(n). 

For a given property A (e.g. connectivity), we define a threshold function 
t(n) as a function that satisfies: 

P(property A) → 0 if 
p(n) 
t(n) 

→ 0, and 

P(property A) → 1 if 
p(n) 
t(n) 

→ ∞. 

This definition makes sense for “monotone or increasing properties,” 
i.e., properties such that if a given network satisfies it, any 
supernetwork (in the sense of set inclusion) satisfies it. 

When such a threshold function exists, we say that a phase transition occurs 
at that threshold. 

Exhibiting such phase transitions was one of the main contributions of the 
seminal work of Erdös and Renyi 1959. 
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Phase Transition Example 

Define property A as A = {number of edges > 0}. 
We are looking for a threshold for the emergence of the first edge. 

Recall E[number of edges] = n(n
2
−1) 

p(n) ≈ n2
2 
p(n). 

Assume 
2
p
/
(n
n
) 
2 0 as n ∞. Then, E[number of edges] 0, which implies → → → 

that P(number of edges > 0) 0.→ 

Assume next that p(n) ∞ as n ∞. Then, E[number of edges] ∞.
2/n2 → → → 

This does not in general imply that P(number of edges > 0) 1.→ 

Here it follows because the number of edges can be approximated by a 
Poisson distribution (just like the degree distribution), implying that 

P(number of edges = 0) = 
e−λλk 

k ! 
= e−λ . 

k=0 

Since the mean number of edges, given by λ, goes to infinity as n ∞, this 
implies that P(number of edges > 0) 1. 

→ 
→ 
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Phase Transitions


Hence, the function t(n) = 1/n2 is a threshold function for the emergence 
of the first link, i.e., 

When p(n) << 1/n2, the network is likely to have no edges in the 
limit, whereas when p(n) >> 1/n2, the network has at least one edge 
with probability going to 1. 

How large should p(n) be to start observing triples in the network? 

We have E[number of triples] = n3p2, using a similar analysis we can 
show t(n) = 

n3
1 
/2 is a threshold function. 

How large should p(n) be to start observing a tree with k nodes (and k − 1 
arcs)? 

We have E[number of trees] = nk pk−1, and the function

t(n) = 

nk/
1 
k−1 is a threshold function.


The threshold function for observing a cycle with k nodes is t(n) = n 
1 

Big trees easier to get than a cycle with arbitrary size! 
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Phase Transitions (Continued) 

Below the threshold of 1/n, the largest component of the graph includes no 
more than a factor times log(n) of the nodes. 

Above the threshold of 1/n, a giant component emerges, which is the 
largest component that contains a nontrivial fraction of all nodes, i.e., at 
least cn for some constant c . 

The giant component grows in size until the threshold of log(n)/n, at which 
point the network becomes connected. 

12 



Networks: Lecture 3 Introduction 

Phase Transitions (Continued)


Figure: A first component with more than two nodes: a random network on 50

nodes with p = 0.01.
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Phase Transitions (Continued)


Figure: Emergence of cycles: a random network on 50 nodes with p = 0.03. 
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Phase Transitions (Continued)


Figure: Emergence of a giant component: a random network on 50 nodes with 
p = 0.05. 
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Phase Transitions (Continued)


Figure: Emergence of connectedness: a random network on 50 nodes with 
p = 0.10. 
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Threshold Function for Connectivity 

Theorem 

(Erdös and Renyi 1961) A threshold function for the connectivity of the Erdös 

and Renyi model is t(n) = log
n 
(n) 

. 

To prove this, it is sufficient to show that when p(n) = λ(n) log
n 
(n) 

with 
λ(n) 0, we have P(connectivity) 0 (and the converse). → → 

However, we will show a stronger result: Let p(n) = λ log
n 
(n) 

. 

If λ < 1, P(connectivity) → 0, (1) 

If λ > 1, P(connectivity) → 1. (2) 

Proof: 

We first prove claim (1). To show disconnectedness, it is sufficient to show 
that the probability that there exists at least one isolated node goes to 1. 
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Proof (Continued) 

Let Ii be a Bernoulli random variable defined as 

1 if node i is isolated, 
Ii = 

0 otherwise. 

We can write the probability that an individual node is isolated as 

q = P(Ii = 1) = (1 − p)n−1 ≈ e−pn = e−λ log(n) = n−λ , (3) � �n 
where we use limn ∞ 1 − n

a = e−a to get the approximation. →

Let X = ∑i
n 
=1 Ii denote the total number of isolated nodes. Then, we have 

E[X ] = n n−λ . (4)· 
For λ < 1, we have E[X ] ∞. We want to show that this implies 
P(X = 0) 0. 

→ 
→ 

In general, this is not true. 
Can we use a Poisson approximation (as in the previous example)? No, 
since the random variables Ii here are dependent. 
We show that the variance of X is of the same order as its mean. 
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Proof (Continued) 

We compute the variance of X , var(X ): 

=
i i j=i 

= nvar(I1) + n(n − 1)cov(I1, I2) 

= nq(1 − q) + n(n − 1) E[I1I2] − E[I1]E[I2] , 

where the second and third equalities follow since the Ii are identically

distributed Bernoulli random variables with parameter q (dependent).


We have 
E[I1I2] = P(I1 = 1, I2 = 1) = P(both 1 and 2 are isolated) 

2 
= (1 − p)2n−3 =

(1 
q

− p) 
. 

Combining the preceding two relations, we obtain � 2 � 
var(X ) = nq(1 − q) + n(n − 1)

(1 
q

− p) 
− q 2 

∑ 

2

= nq(1 − q) + n(n − 1) 
1 
q

− 
p

p 
. 

var(X ) var(Ii ) + ∑
∑
 cov(Ii , Ij ) 
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Proof (Continued) 

For large n, we have q 0 [cf. Eq. (3)], or 1 − q 1. Also p 0. Hence, → → → 

var(X ) nq + n 2 q 2 
1 − 

p

p 
∼ nq + n 2 q 2 p∼ 

= nn−λ + λn log(n)n−2λ


∼ nn−λ = E[X ],


where a(n) ∼ b(n) denotes b
a(
(
n
n
)
) → 1 as n → ∞.


This implies that


E[X ] ∼ var(X ) ≥ (0 − E[X ])2P(X = 0),


and therefore,


P(X = 0) ≤ 
E

E

[
[
X

X 
]
] 
2 = 

E[
1 
X ] 

→ 0.


It follows that P(at least one isolated node) 1 and therefore, →
P(disconnected) 1 as n ∞, completing the proof. → → 
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Converse 

We next show claim (2), i.e., if p(n) = λ log
n 
(n) 

with λ > 1, then 
P(connectivity) 1, or equivalently P(disconnectivity) 0.→ → 

From Eq. (4), we have E[X ] = n n−λ 0 for λ > 1.· → 

This implies probability of isolated nodes goes to 0. However, we need more 
to establish connectivity. 

The event “graph is disconnected” is equivalent to the existence of k nodes 
without an edge to the remaining nodes, for some k ≤ n/2. 

We have 

P({1, . . . , k} not connected to the rest) = (1 − p)k(n−k), 

and therefore, 

P(∃ k nodes not connected to the rest) = 
n 

(1 − p)k(n−k). 
k 
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Converse (Continued) 

Using the union bound [i.e. P(∪i Ai ) ≤ ∑i P(Ai )], we obtain 

n/2 � 
n 
� 

P(disconnected graph) ≤ ∑ (1 − p)k(n−k). 
k

k=1 � �k 
Using Stirling’s formula k ! ∼ k

e , which implies (k
n) ≤ 

( 
n
k
e 

k 

)k in the 

preceding relation and some (ugly) algebra, we obtain 

P(disconnected graph) 0,→ 

completing the proof. 
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