6.207/14.15: Networks
 Lecture 4: Erdös-Renyi Graphs and Phase Transitions

Daron Acemoglu and Asu Ozdaglar MIT

September 21, 2009

Outline

- Phase transitions
- Connectivity threshold
- Emergence and size of a giant component
- An application: contagion and diffusion

Reading:

- Jackson, Sections 4.2.2-4.2.5, and 4.3.

Phase Transitions for Erdös-Renyi Model

- Erdös-Renyi model is completely specified by the link formation probability $p(n)$.
- For a given property A (e.g. connectivity), we define a threshold function $t(n)$ as a function that satisfies:

$$
\begin{array}{cl}
\mathbb{P}(\text { property } A) \rightarrow 0 & \text { if } \quad \frac{p(n)}{t(n)} \rightarrow 0, \text { and } \\
\mathbb{P}(\text { property } A) \rightarrow 1 & \text { if } \quad \frac{p(n)}{t(n)} \rightarrow \infty
\end{array}
$$

- This definition makes sense for "monotone or increasing properties," i.e., properties such that if a given network satisfies it, any supernetwork (in the sense of set inclusion) satisfies it.
- When such a threshold function exists, we say that a phase transition occurs at that threshold.
- Exhibiting such phase transitions was one of the main contributions of the seminal work of Erdös and Renyi 1959.

Threshold Function for Connectivity

Theorem

(Erdös and Renyi 1961) A threshold function for the connectivity of the Erdös and Renyi model is $t(n)=\frac{\log (n)}{n}$.

- To prove this, it is sufficient to show that when $p(n)=\lambda(n) \frac{\log (n)}{n}$ with $\lambda(n) \rightarrow 0$, we have \mathbb{P} (connectivity) $\rightarrow 0$ (and the converse).
- However, we will show a stronger result: Let $p(n)=\lambda \frac{\log (n)}{n}$.

$$
\begin{array}{ll}
\text { If } \lambda<1, & \mathbb{P}(\text { connectivity }) \rightarrow 0 \\
\text { If } \lambda>1, & \mathbb{P}(\text { connectivity }) \rightarrow 1 . \tag{2}
\end{array}
$$

Proof:

- We first prove claim (1). To show disconnectedness, it is sufficient to show that the probability that there exists at least one isolated node goes to 1 .

Proof (Continued)

- Let I_{i} be a Bernoulli random variable defined as

$$
I_{i}=\left\{\begin{array}{cc}
1 & \text { if node } i \text { is isolated } \\
0 & \text { otherwise }
\end{array}\right.
$$

- We can write the probability that an individual node is isolated as

$$
\begin{equation*}
q=\mathbb{P}\left(I_{i}=1\right)=(1-p)^{n-1} \approx e^{-p n}=e^{-\lambda \log (n)}=n^{-\lambda} \tag{3}
\end{equation*}
$$

where we use $\lim _{n \rightarrow \infty}\left(1-\frac{a}{n}\right)^{n}=e^{-a}$ to get the approximation.

- Let $X=\sum_{i=1}^{n} l_{i}$ denote the total number of isolated nodes. Then, we have

$$
\begin{equation*}
\mathbb{E}[X]=n \cdot n^{-\lambda} \tag{4}
\end{equation*}
$$

- For $\lambda<1$, we have $\mathbb{E}[X] \rightarrow \infty$. We want to show that this implies $\mathbb{P}(X=0) \rightarrow 0$.
- In general, this is not true.
- Can we use a Poisson approximation (as in the example from last lecture)? No, since the random variables I_{i} here are dependent.
- We show that the variance of X is of the same order as its mean.

Proof (Continued)

- We compute the variance of $X, \operatorname{var}(X)$:

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{i} \operatorname{var}\left(I_{i}\right)+\sum_{i} \sum_{j \neq i} \operatorname{cov}\left(l_{i}, l_{j}\right) \\
& =n \operatorname{var}\left(I_{1}\right)+n(n-1) \operatorname{cov}\left(I_{1}, l_{2}\right) \\
& =n q(1-q)+n(n-1)\left(\mathbb{E}\left[I_{1} I_{2}\right]-\mathbb{E}\left[I_{1}\right] \mathbb{E}\left[I_{2}\right]\right)
\end{aligned}
$$

where the second and third equalities follow since the I_{i} are identically distributed Bernoulli random variables with parameter q (dependent).

- We have

$$
\begin{aligned}
\mathbb{E}\left[I_{1} I_{2}\right] & =\mathbb{P}\left(I_{1}=1, I_{2}=1\right)=\mathbb{P}(\text { both } 1 \text { and } 2 \text { are isolated }) \\
& =(1-p)^{2 n-3}=\frac{q^{2}}{(1-p)} .
\end{aligned}
$$

- Combining the preceding two relations, we obtain

$$
\begin{aligned}
\operatorname{var}(X) & =n q(1-q)+n(n-1)\left[\frac{q^{2}}{(1-p)}-q^{2}\right] \\
& =n q(1-q)+n(n-1) \frac{q^{2} p}{1-p}
\end{aligned}
$$

Proof (Continued)

- For large n, we have $q \rightarrow 0$ [cf. Eq. (3)], or $1-q \rightarrow 1$. Also $p \rightarrow 0$. Hence,

$$
\begin{aligned}
\operatorname{var}(X) & \sim n q+n^{2} q^{2} \frac{p}{1-p} \sim n q+n^{2} q^{2} p \\
& =n n^{-\lambda}+\lambda n \log (n) n^{-2 \lambda} \\
& \sim n n^{-\lambda}=\mathbb{E}[X]
\end{aligned}
$$

where $a(n) \sim b(n)$ denotes $\frac{a(n)}{b(n)} \rightarrow 1$ as $n \rightarrow \infty$.

- This implies that

$$
\mathbb{E}[X] \sim \operatorname{var}(X) \geq(0-\mathbb{E}[X])^{2} \mathbb{P}(X=0)
$$

and therefore,

$$
\mathbb{P}(X=0) \leq \frac{\mathbb{E}[X]}{\mathbb{E}[X]^{2}}=\frac{1}{\mathbb{E}[X]} \rightarrow 0
$$

- It follows that \mathbb{P} (at least one isolated node) $\rightarrow 1$ and therefore, \mathbb{P} (disconnected) $\rightarrow 1$ as $n \rightarrow \infty$, completing the proof.

Converse

- We next show claim (2), i.e., if $p(n)=\lambda \frac{\log (n)}{n}$ with $\lambda>1$, then \mathbb{P} (connectivity) $\rightarrow 1$, or equivalently \mathbb{P} (disconnectivity) $\rightarrow 0$.
- From Eq. (4), we have $\mathbb{E}[X]=n \cdot n^{-\lambda} \rightarrow 0$ for $\lambda>1$.
- This implies probability of having isolated nodes goes to 0 . However, we need more to establish connectivity.
- The event "graph is disconnected" is equivalent to the existence of k nodes without an edge to the remaining nodes, for some $k \leq n / 2$.
- We have

$$
\mathbb{P}(\{1, \ldots, k\} \text { not connected to the rest })=(1-p)^{k(n-k)},
$$

and therefore,

$$
\mathbb{P}(\exists \mathrm{k} \text { nodes not connected to the rest })=\binom{n}{k}(1-p)^{k(n-k)} .
$$

Converse (Continued)

- Using the union bound [i.e. $\mathbb{P}\left(\cup_{i} A_{i}\right) \leq \sum_{i} \mathbb{P}\left(A_{i}\right)$], we obtain

$$
\mathbb{P}(\text { disconnected graph }) \leq \sum_{k=1}^{n / 2}\binom{n}{k}(1-p)^{k(n-k)} .
$$

- Using Stirling's formula $k!\sim\left(\frac{k}{e}\right)^{k}$, which implies $\binom{n}{k} \leq \frac{n^{k}}{\left(\frac{k}{e}\right)^{k}}$ in the preceding relation and some (ugly) algebra, we obtain

$$
\mathbb{P}(\text { disconnected graph }) \rightarrow 0,
$$

completing the proof.

Phase Transitions - Connectivity Threshold

Figure: Emergence of connectedness: a random network on 50 nodes with $p=0.10$.

Giant Component

- We have shown that when $p(n) \ll \frac{\log (n)}{n}$, the Erdös-Renyi graph is disconnected with high probability.
- In cases for which the network is not connected, the component structure is of interest.
- We have argued that in this regime the expected number of isolated nodes goes to infinity. This suggests that the Erdös-Renyi graph should have an arbitrarily large number of components.
- We will next argue that the threshold $p(n)=\frac{\lambda}{n}$ plays an important role in the component structure of the graph.
- For $\lambda<1$, all components of the graph are "small".
- For $\lambda>1$, the graph has a unique giant component, i.e., a component that contains a constant fraction of the nodes.

Emergence of the Giant Component-1

- We will analyze the component structure in the vicinity of $p(n)=\frac{\lambda}{n}$ using a branching process approximation.
- We assume $p(n)=\frac{\lambda}{n}$.
- Let $B\left(n, \frac{\lambda}{n}\right)$ denote a binomial random variable with n trials and success probability $\frac{\lambda}{n}$.
- Consider starting from an arbitrary node (node 1 without loss of generality), and exploring the graph.

(a) Erdos-Renyi graph process.

(b) Branching Process Approx.

Emergence of the Giant Component-2

- We first consider the case when $\lambda<1$.
- Let Z_{k}^{G} and Z_{k}^{B} denote the number of individuals at stage k for the graph process and the branching process approximation, respectively.
- In view of the "overcounting" feature of the branching process, we have

$$
z_{k}^{G} \leq Z_{k}^{B} \quad \text { for all } k
$$

- From branching process analysis (see Lecture 3 notes), we have

$$
\mathbb{E}\left[Z_{k}^{B}\right]=\lambda^{k}
$$

(since the expected number of children is given by $n \times \frac{\lambda}{n}=\lambda$).

- Let S_{1} denote the number of nodes in the Erdös-Renyi graph connected to node 1, i.e., the size of the component which contains node 1.
- Then, we have

$$
\mathbb{E}\left[S_{1}\right]=\sum_{k} \mathbb{E}\left[Z_{k}^{G}\right] \leq \sum_{k} \mathbb{E}\left[Z_{k}^{B}\right]=\sum_{k} \lambda^{k}=\frac{1}{1-\lambda} .
$$

Emergence of the Giant Component-3

- The preceding result suggests that for $\lambda<1$, the sizes of the components are "small".

Theorem
Let $p(n)=\frac{\lambda}{n}$ and assume that $\lambda<1$. For all (sufficiently large) a >0, we have

$$
\mathbb{P}\left(\max _{1 \leq i \leq n}\left|S_{i}\right| \geq a \log (n)\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Here $\left|S_{i}\right|$ is the size of the component that contains node i.

- This result states that for $\lambda<1$, all components are small [in particular they are of size $O(\log (n))]$.
- Proof is beyond the scope of this course.

Emergence of the Giant Component-4

- We next consider the case when $\lambda>1$.
- We claim that $Z_{k}^{G} \approx Z_{k}^{B}$ when $\lambda^{k} \leq O(\sqrt{n})$.
- The expected number of conflicts at stage $k+1$ satisfies
\mathbb{E} [number of conflicts at stage $k+1] \leq_{1} n p^{2} \mathbb{E}\left[Z_{k}^{2}\right]=n \frac{\lambda^{2}}{n^{2}} \mathbb{E}\left[Z_{k}^{2}\right]$.

- We assume for large n that Z_{k} is a Poisson random variable and therefore $\operatorname{var}\left(Z_{k}\right)=\lambda^{k}$. This implies that

$$
\mathbb{E}\left[Z_{k}^{2}\right]=\operatorname{var}\left(Z_{k}\right)+\mathbb{E}\left[Z_{k}\right]^{2}=\lambda^{k}+\lambda^{2 k} \approx \lambda^{2 k} .
$$

- Combining the preceding two relations, we see that the conflicts become non-negligible only after $\lambda^{k} \approx \sqrt{n}$.

Emergence of the Giant Component-5

- Hence, there exists some $c>0$ such that \mathbb{P} (there exists a component with size $\geq c \sqrt{n}$ nodes) $\rightarrow 1$ as $n \rightarrow \infty$.
- Moreover, between any two components of size \sqrt{n}, the probability of having a link is given by
$\mathbb{P}($ there exists at least one link $)=1-\left(1-\frac{\lambda}{n}\right)^{n} \approx 1-e^{-\lambda}$, i.e., it is a positive constant independent of n.
- This argument can be used to see that components of size $\leq \sqrt{n}$ connect to each other, forming a connected component of size $q n$ for some $q>0$, a giant component.

Size of the Giant Component

- Form an Erdös-Renyi graph with $n-1$ nodes with link formation probability $p(n)=\frac{\lambda}{n}, \lambda>1$.
- Now add a last node, and connect this node to the rest of the graph with probability $p(n)$.
- Let q be the fraction of nodes in the giant component of the $n-1$ node network. We can assume that for large n, q is also the fraction of nodes in the giant component of the n-node network.
- The probability that node n is not in the giant component is given by

$$
\mathbb{P}(\text { node } n \text { not in the giant component })=1-q \equiv \rho .
$$

- The probability that node n is not in the giant component is equal to the probability that none of its neighbors is in the giant component, yielding

$$
\rho=\sum_{d} P_{d} \rho^{d} \equiv \Phi(\rho) .
$$

- Similar to the analysis of branching processes, we can show that this equation has a fixed point $\rho^{*} \in(0,1)$.

An Application: Contagion and Diffusion

- Consider a society of n individuals.
- A randomly chosen individual is infected with a contagious virus.
- Assume that the network of interactions in the society is described by an Erdös-Renyi graph with link probability p.
- Assume that any individual is immune with a probability π.
- We would like to find the expected size of the epidemic as a fraction of the whole society.
- The spread of disease can be modeled as:
- Generate an Erdös-Renyi graph with n nodes and link probability p.
- Delete πn of the nodes uniformly at random.
- Identify the component that the initially infected individual lies in.
- We can equivalently examine a graph with $(1-\pi) n$ nodes with link probability p.

An Application: Contagion and Diffusion

- We consider 3 cases:
- $p(1-\pi) n<1$:
$\mathbb{E}[$ size of epidemic as a fraction of the society $] \leq \frac{\log (n)}{n} \approx 0$.
- $1<p(1-\pi) n<\log ((1-\pi) n)$:
\mathbb{E} [size of epidemic as a fraction of the society] $=\frac{q q(1-\pi) n+(1-q) \log ((1-\pi) n))}{n} \approx q^{2}(1-\pi)$,
where q denotes the fraction of nodes in the giant component of the graph with $(1-\pi) n$ nodes, i.e., $q=1-e^{-q(1-\pi) n p}$.
- $p>\frac{\log ((1-\pi) n)}{(1-\pi) n}$:
$\mathbb{E}[$ size of epidemic as a fraction of the society $]=(1-\pi)$.

MIT OpenCourseWare
http://ocw.mit.edu

14.15J / 6.207J Networks

Fall 2009

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

