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Networks: Lecture 5 

Outline 

Generalized random graph models 

Graphs with prescribed degrees – Configuration model 

Emergence of a giant component in the configuration model 
Small-world model 

Clustering 
Average path lengths 

Reading: 

Jackson, Sections 4.1.2, 4.1.4-4.1.6, 4.2.1, 4.2.6, 4.2.7. 

EK, Chapter 20. 
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Networks: Lecture 5 

Configuration Model—1 

We have seen that the Erdös-Renyi model has a Poisson degree distribution, 
which falls off very fast. 

Our next goal is to generate random networks with a “given degree 
distribution”. 

One of the most widely method used for this purpose is the configuration 
model developed by Bender and Canfield in 1978. 

The configuration model is specified in terms of a degree sequence, i.e., for 
a network of n nodes, we have a desired degree sequence (d1, . . . , dn), 
which specifies the degree di of node i , for i = 1, . . . , n. 

Given a degree distribution P(d), we can generate the degree sequence 
for n nodes by sampling the degrees independently from the 
distribution P(d), i.e., di ∼ P(d). 
A law of large numbers argument establishes that the frequency of 
degrees P (n)(d) converges to the degree distribution P(d) as n goes to 
infinity. 
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Networks: Lecture 5 

Configuration Model—2 

Given (d1, . . . , dn), we construct a sequence where node 1 is listed d1 times, 
node 2 is listed d2 times, and so on: 

1, 1, 1, 1, . . . , 1 2, 2, . . . , 2 · · · n, n, n . . . , n .� �� � � �� � � �� � 
d1 entries d2 entries dn entries 

We can think of this as giving each node i in the graph di “stubs” sticking 
out of it, which are ends of edges-to-be. 

We randomly pick two elements of the sequence and form a link between the 
two nodes corresponding to those entries. 

We delete those entries from the sequence and repeat. 

Remarks: 

The sum of degrees needs to be even (or else an entry will be left out 
at the end). 
It is possible to have more than one link between two nodes (thus 
generating a “multigraph”). 
Self-loops are possible. 
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Networks: Lecture 5 

Distribution of the Degree of a Neighboring Node—1 

We will use a branching process approximation to study the giant 
component in the configuration model. 

For this we need to understand the distribution of the degree of a 
neighboring node, i.e., given some node i with degree di , consider a 
neighbor j . What is the degree distribution of node j? 

Naive intuition: Same distribution as node i . Example: Consider a graph 
with 4 nodes and links {1,2}, {2,3}, {3,4}. 

We have P(1) = P(2) = 1/2. 
If we randomly pick a link and then randomly pick an end of it, there is 
a 2/3 chance of finding a node with degree 2 and 1/3 chance of finding 
a node with degree 1. 
Reflects the fact that higher degree nodes are involved in a higher 
percentage of the links. 
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Networks: Lecture 5 

Distribution of the Degree of a Neighboring Node—2 

The degree of a node we reach by following a randomly chosen edge is not 
given by P(d). 

There are d edges that arrive at a node of degree d , we are d times as likely 
to arrive at that node than another node that has degree 1. 

Thus, the degree distribution of the neighboring node P̃ (d) is proportional 
to dP(d), dP(d) dP(d)

P̃ (d) = = . 
∑k kP(k) �d� 

Another way to see this is:
 
endpoints attached to degree d nodes dnP(d)
 

P̃ (d) = = 
total number of endpoints n ∑k kP(k) 

.
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Networks: Lecture 5 

Emergence of a Giant Component in the Configuration 
Model—1 

We will use a branching process approximation to analyze the emergence of 
the giant component. 

We ignore self loops (can be shown to have small probability) and 
conflicts (do not matter until the graph grows to a substantial size). 

Note that we have 

µ = Ẽ[number of children] = Ẽ[d − 1] 
= ∑ d P̃(d) − 1 

d 

= ∑ 
d 

d2P(d) 
�d� − 1 

�d2� 
= − 1. �d� 
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Networks: Lecture 5 

Emergence of a Giant Component in the Configuration 
Model—2 

Using the branching process analysis, this yields the following threshold for 
the emergence of the giant component:
 

Subcritical: µ < 1, or equivalently
 

2�d � 
< 2 ⇔ �d(d − 2)� < 0. �d� 

Supercritical: µ > 1, or equivalently
 

�d(d − 2)� > 0.
 

In the case of an Erdös-Renyi graph, we have �d2� = �d� + �d�2, and so the 
giant component emerges when 

�d2� > �d� ⇔ �d� > 1. 

Since �d� = (n − 1)p in the Erdös-Renyi graph, this indeed yields the 
1threshold function t(n) = for the emergence of the giant component. n 
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Networks: Lecture 5 

Small-World Model
 

Erdös-Renyi model has short path lengths (recall the giant component
 
analysis using branching process approximation). However, they have a
 
Poisson degree distribution and low clustering.
 

Generalized random graph models (such as the configuration model) 
effectively addresses one of the shortcomings of the Erdös-Renyi random 
graph model, its unrealistic degree distribution. 

However, they fail to capture the common phenomenon of clustering
 
observed in social networks.
 

A tractable model that combines high clustering with short path lengths is 
the small-world model, proposed by Watts and Strogatz in 1998. 

The model follows naturally from combining two basic social network ideas: 
homophily (the tendency to associate to those similar to ourselves) and 
weak ties (the links to acquaintances that connect us to parts of the network 
that would otherwise be far away). 

Homophily creates high clustering while the weak ties produce the 
branching structure that reaches many nodes in a few steps. 
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Networks: Lecture 5 

Small-World Model
 

The small-world model posits a network built on a low-dimensional regular 
lattice (capturing geographic or some other social proximity), and then 
adding or moving random edges to create a low density of “shortcuts” that 
join the remote parts of the lattice to one another. 

The best studied case is a one-dimensional lattice with periodic boundary 
conditions, i.e., a ring. 

We consider a ring with n nodes and join each node to its neighbors k or 
fewer hops (lattice spacings) away. 

This creates nk edges. 

k = 2 

Figure: A ring lattice with k = 2. 
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Networks: Lecture 5 

Small-World Model
 

The small-world model is then created by taking a small fraction p of the 
edges in this graph and “rewiring” them. 

The rewiring procedure involves going through each edge in turn, and with 
probability p, moving one end of that edge to a new location chosen 
uniformly at random from the lattice. 

Expected number of total shortcuts is nkp. 

(a) (b) (c) 

Image by MIT OpenCourseWare. 

Figure: A small world model with k = 3; part (a) illustrates p = 0, part (b) 
illustrates rewiring with probability p > 0, part (c) illustrates addition of 
random links with probability p > 0. 
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Networks: Lecture 5 

Small-World Model
 

A more mathematically tractable variant of the model was proposed by 
Newman and Watts in 1999. 

No edges are rewired. Instead “shortcuts” joining randomly chosen 
node pairs are added to the ring lattice. 
The parameter p is defined as the probability per edge on the 
underlying lattice of there being a shortcut in the graph (to make it 
similar to the previous model). 
Hence, the mean total number of shortcuts is nkp and mean degree is 
2k + 2kp. 
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Networks: Lecture 5 

Clustering vs Path Lengths in the Small World Model 

Addition of random links allows the small-world model to interpolate 
between a regular lattice (p=0) and a random graph. 

Regular lattice has high clustering Cl(g ) = 3k−3 , long paths O( n ).4k−2 k 
Random graph has low clustering and short paths. 

Watts and Strogatz showed by numerical simulation that there exists a 
sizable region in between the two extremes in which the model has both low 
path lengths and high clustering. 
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Image by MIT OpenCourseWare. 

Figure: Clustering coefficient and average path length in the small-world 
model of Watts and Strogatz. 
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Networks: Lecture 5 

Average Path Length in the Small-World Model—1 

We next show that the average path length in the small-world model is small 
[i.e., O(log(n))]. 

To simplify the analysis,we consider a continuum approximation: 

We take a continuum of nodes around a ring with unit circumference. 
We throw u random shortcuts: we choose u pairs of points 
independently and uniformly at random, and connect them. 

circumference=1 

Let f (u) denote the expected distance along the circle between two random 
points on this graph (assumes shortcuts have 0 distance). 

Since the unit circumference in the continuous model maps into n arcs in 
nf (u)

the discrete model, average distance f (u) maps into arcs. k 
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Networks: Lecture 5 

Average Path Length in the Small-World Model—2 

We next show that for large u, f (u) can be approximated as f (u) = log(u) 
. u 

Since u = npk , this implies that the average distance in terms of number of 
arcs satisfies 

nf (u) n log(npk)
= ≈ log(n). 

k npk2 

We analyze the continuous model by discretizing it into u intervals of length 
δ = 1/u. 

The shortcuts generated can be represented as an Erdös-Renyi model with 
the δ-length intervals corresponding to the nodes. 

With this identification, we have 

E[number of edges] = u, E[number of end points] = 2u, 

E[degree] = 2. 
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Networks: Lecture 5 

Average Path Length in the Small-World Model—3 

Hence, the link formation probability satisfies p(n) = 2 , suggesting that n 
there exists a giant component. 

Any two nodes in the giant component (or intervals in the continuous 
model) can be connected by a path of log(u) nodes (or intervals). 

Moreover, it can be shown that any node (interval) which is not in the giant 
component can be connected to the giant component on average in a 
constant c number of nodes (intervals). 

Hence the distance between any two intervals satisfies: 

distance ≤ log(u) · 1 
+ 

c 
, 

u u 

log(u)
showing that f (u) ≈ . u 
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