6.207/14.15: Networks
 Lecture 10: Introduction to Game Theory-2

Daron Acemoglu and Asu Ozdaglar MIT

October 14, 2009

Outline

- Review
- Examples of Pure Strategy Nash Equilibria
- Mixed Strategies
- Existence of Mixed Strategy Nash Equilibrium in Finite Games
- Characterizing Mixed Strategy Equilibria
- Applications
- Reading:
- Osborne, Chapters 3-5.

Pure Strategy Nash Equilibrium

Definition

(Nash equilibrium) A (pure strategy) Nash Equilibrium of a strategic game $\left\langle\mathcal{I},\left(S_{i}\right)_{i \in \mathcal{I}},\left(u_{i}\right)_{i \in \mathcal{I}}\right\rangle$ is a strategy profile $s^{*} \in S$ such that for all $i \in \mathcal{I}$

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}, s_{-i}^{*}\right) \quad \text { for all } s_{i} \in S_{i} .
$$

- Why is this a "reasonable" notion?
- No player can profitably deviate given the strategies of the other players. Thus in Nash equilibrium, "best response correspondences intersect".
- Put differently, the conjectures of the players are consistent: each player i chooses s_{i}^{*} expecting all other players to choose s_{-i}^{*}, and each player's conjecture is verified in a Nash equilibrium.

Examples: Bertrand Competition

- An alternative to the Cournot model is the Bertrand model of oligopoly competition.
- In the Cournot model, firms choose quantities. In practice, choosing prices may be more reasonable.
- What happens if two producers of a homogeneous good charge different prices? Reasonable answer: everybody will purchase from the lower price firm.
- In this light, suppose that the demand function of the industry is given by $Q(p)$ (so that at price p, consumers will purchase a total of $Q(p)$ units).
- Suppose that two firms compete in this industry and they both have marginal cost equal to $c>0$ (and can produce as many units as they wish at that marginal costs).

Bertrand Competition (continued)

- Then the profit function of firm i can be written as

$$
\pi_{i}\left(p_{i}, p_{-i}\right)=\left\{\begin{array}{cl}
Q\left(p_{i}\right)\left(p_{i}-c\right) & \text { if } p_{-i}>p_{i} \\
\frac{1}{2} Q\left(p_{i}\right)\left(p_{i}-c\right) & \text { if } p_{-i}=p_{i} \\
0 & \text { if } p_{-i}<p_{i}
\end{array}\right.
$$

- Actually, the middle row is arbitrary, given by some ad hoc "tiebreaking" rule. Imposing such tie-breaking rules is often not "kosher" as the homework will show.

Proposition

In the two-player Bertrand game there exists a unique Nash equilibrium given by $p_{1}=p_{2}=c$.

Bertrand Competition (continued)

Proof: Method of "finding a profitable deviation".

- Can $p_{1} \geq c>p_{2}$ be a Nash equilibrium? No because firm 2 is losing money and can increase profits by raising its price.
- Can $p_{1}=p_{2}>c$ be a Nash equilibrium? No because either firm would have a profitable deviation, which would be to reduce their price by some small amount (from p_{1} to $p_{1}-\varepsilon$).
- Can $p_{1}>p_{2}>c$ be a Nash equilibrium? No because firm 1 would have a profitable deviation, to reduce its price to $p_{2}-\varepsilon$.
- Can $p_{1}>p_{2}=c$ be a Nash equilibrium? No because firm 2 would have a profitable deviation, to increase its price to $p_{1}-\varepsilon$.
- Can $p_{1}=p_{2}=c$ be a Nash equilibrium? Yes, because no profitable deviations. Both firms are making zero profits, and any deviation would lead to negative or zero profits.

Examples: Second Price Auction

- Second Price Auction (with Complete Information) The second price auction game is specified as follows:
- An object to be assigned to a player in $\{1, . ., n\}$.
- Each player has her own valuation of the object. Player i's valuation of the object is denoted v_{i}. We further assume that $v_{1}>v_{2}>\ldots>0$.
- Note that for now, we assume that everybody knows all the valuations v_{1}, \ldots, v_{n}, i.e., this is a complete information game. We will analyze the incomplete information version of this game in later lectures.
- The assignment process is described as follows:
- The players simultaneously submit bids, $b_{1}, . ., b_{n}$.
- The object is given to the player with the highest bid (or to a random player among the ones bidding the highest value).
- The winner pays the second highest bid.
- The utility function for each of the players is as follows: the winner receives her valuation of the object minus the price she pays, i.e., $v_{i}-b_{j}$; everyone else receives 0 .

Second Price Auction (continued)

Proposition

In the second price auction, truthful bidding, i.e., $b_{i}=v_{i}$ for all i, is a Nash equilibrium.

Proof: We want to show that the strategy profile $\left(b_{1}, . ., b_{n}\right)=\left(v_{1}, . ., v_{n}\right)$ is a Nash Equilibrium-a truthful equilibrium.

- First note that if indeed everyone plays according to that strategy, then player 1 receives the object and pays a price v_{2}.
- This means that her payoff will be $v_{1}-v_{2}>0$, and all other payoffs will be 0 . Now, player 1 has no incentive to deviate, since her utility can only decrease.
- Likewise, for all other players $v_{i} \neq v_{1}$, it is the case that in order for v_{i} to change her payoff from 0 she needs to bid more than v_{1}, in which case her payoff will be $v_{i}-v_{1}<0$.
- Thus no incentive to deviate from for any player.

Second Price Auction (continued)

- Are There Other Nash Equilibria? In fact, there are also unreasonable Nash equilibria in second price auctions.
- We show that the strategy $\left(v_{1}, 0,0, \ldots, 0\right)$ is also a Nash Equilibrium.
- As before, player 1 will receive the object, and will have a payoff of $v_{1}-0=v_{1}$. Using the same argument as before we conclude that none of the players have an incentive to deviate, and the strategy is thus a Nash Equilibrium.
- It can be verified the strategy $\left(v_{2}, v_{1}, 0,0, \ldots, 0\right)$ is also a Nash Equilibrium.
- Why?

Second Price Auction (continued)

- Nevertheless, the truthful equilibrium, where, $b_{i}=v_{i}$, is the Weakly Dominant Nash Equilibrium
- In particular, truthful bidding, $b_{i}=v_{i}$, weakly dominates all other strategies.
- Consider the following picture proof where B^{*} represents the maximum of all bids excluding player i's bid, i.e.

$$
B^{*}=\max _{j \neq i} b_{j},
$$

and v^{*} is player i's valuation and the vertical axis is utility.

$b_{i}=v^{*}$

$b_{i}<v^{*}$

$b_{i}>v^{*}$

Second Price Auction (continued)

- The first graph shows the payoff for bidding one's valuation. In the second graph, which represents the case when a player bids lower than their valuation, notice that whenever $b_{i} \leq B^{*} \leq v^{*}$, player i receives utility 0 because she loses the auction to whoever bid B^{*}.
- If she would have bid her valuation, she would have positive utility in this region (as depicted in the first graph).
- Similar analysis is made for the case when a player bids more than their valuation.
- An immediate implication of this analysis is that other equilibria involve the play of weakly dominated strategies.

Nonexistence of Pure Strategy Nash Equilibria

- Example: Matching Pennies.

- No pure Nash equilibrium.
- How would you play this game?

Nonexistence of Pure Strategy Nash Equilibria

- Example: The Penalty Kick Game.

penalty taker \backslash goalie	left left	right $(-1,1)$
$(1,-1)$		
right	$(1,-1)$	$(-1,1)$

- No pure Nash equilibrium.
- How would you play this game if you were the penalty taker?
- Suppose you always show up left.
- Would this be a "good strategy"?
- Empirical and experimental evidence suggests that most penalty takers "randomize" \rightarrow mixed strategies.

Mixed Strategies

- Let Σ_{i} denote the set of probability measures over the pure strategy (action) set S_{i}.
- For example, if there are two actions, S_{i} can be thought of simply as a number between 0 and 1 , designating the probability that the first action will be played.
- We use $\sigma_{i} \in \Sigma_{i}$ to denote the mixed strategy of player i, and $\sigma \in \Sigma=\prod_{i \in \mathcal{I}} \Sigma_{i}$ to denote a mixed strategy profile.
- Note that this implicitly assumes that players randomize independently.
- We similarly define $\sigma_{-i} \in \Sigma_{-i}=\prod_{j \neq i} \Sigma_{j}$.
- Following von Neumann-Morgenstern expected utility theory, we extend the payoff functions u_{i} from S to Σ by

$$
u_{i}(\sigma)=\int_{S} u_{i}(s) d \sigma(s)
$$

Mixed Strategy Nash Equilibrium

Definition

(Mixed Nash Equilibrium): A mixed strategy profile σ^{*} is a (mixed strategy) Nash Equilibrium if for each player i,

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right) \quad \text { for all } \sigma_{i} \in \Sigma_{i} .
$$

Proposition

Let $G=\left\langle\mathcal{I},\left(S_{i}\right)_{i \in \mathcal{I}},\left(u_{i}\right)_{i \in \mathcal{I}}\right\rangle$ be a finite strategic form game. Then, $\sigma^{*} \in \Sigma$ is a Nash equilibrium if and only if for each player $i \in \mathcal{I}$, every pure strategy in the support of σ_{i}^{*} is a best response to σ_{-i}^{*}.

Proof idea: If a mixed strategy profile is putting positive probability on a strategy that is not a best response, then shifting that probability to other strategies would improve expected utility.

Mixed Strategy Nash Equilibria (continued)

- It follows that every action in the support of any player's equilibrium mixed strategy yields the same payoff.
- Implication: it is sufficient to check pure strategy deviations, i.e., σ^{*} is a mixed Nash equilibrium if and only if for all i,

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geq u_{i}\left(s_{i}, \sigma_{-i}^{*}\right) \quad \text { for all } s_{i} \in S_{i} .
$$

- Note: this characterization result extends to infinite games: $\sigma^{*} \in \Sigma$ is a Nash equilibrium if and only if for each player $i \in \mathcal{I}$, no action in S_{i} yields, given σ_{-i}^{*}, a payoff that exceeds his equilibrium payoff, the set of actions that yields, given σ_{-i}^{*}, a payoff less than his equilibrium payoff has σ_{i}^{*}-measure zero.

Examples

Example: Matching Pennies.

$$
\begin{array}{ccc}
\text { Player } 1 \text { \Player } 2 & \text { heads } & \text { tails } \\
\text { heads } & (-1,1) & (1,-1) \\
\text { tails } & (1,-1) & (-1,1)
\end{array}
$$

- Unique mixed strategy equilibrium where both players randomize with probability $1 / 2$ on heads.
Example: Battle of the Sexes Game.

Player 1 \Player 2	ballet	football
ballet	$(1,4)$	$(0,0)$
football	$(0,0)$	$(4,1)$

- This game has two pure Nash equilibria and a mixed Nash equilibrium $\left(\left(\frac{4}{5}, \frac{1}{5}\right),\left(\frac{1}{5}, \frac{4}{5}\right)\right)$.

Weierstrass's Theorem

Theorem
(Weierstrass) Let A be a nonempty compact subset of a finite dimensional Euclidean space and let $f: A \rightarrow \mathbb{R}$ be a continuous function.
Then there exists an optimal solution to the optimization problem

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & x \in A .
\end{aligned}
$$

$$
\min _{x \geq 0} e^{-x}=0
$$

There exists no optimal x that attains it

Kakutani's Fixed Point Theorem

Theorem

(Kakutani) Let $f: A \rightrightarrows A$ be a correspondence, with $x \in A \mapsto f(x) \subset A$, satisfying the following conditions:

- A is a compact, convex, and non-empty subset of a finite dimensional Euclidean space.
- $f(x)$ is non-empty for all $x \in A$.
- $f(x)$ is a convex-valued correspondence: for all $x \in A, f(x)$ is a convex set.
- $f(x)$ has a closed graph: that is, if $\left\{x^{n}, y^{n}\right\} \rightarrow\{x, y\}$ with $y^{n} \in f\left(x^{n}\right)$, then $y \in f(x)$.

Then, f has a fixed point, that is, there exists some $x \in A$, such that $x \in f(x)$.

Definitions (continued)

- A set in a Euclidean space is compact if and only if it is bounded and closed.
- A set S is convex if for any $x, y \in S$ and any $\lambda \in[0,1]$, $\lambda x+(1-\lambda) y \in S$.

convex set

not a convex set

Kakutani's Fixed Point Theorem-Graphical Illustration

$f(x)$ is not convex-valued

$f(x)$ does not have a closed graph

Nash's Theorem

Theorem

(Nash) Every finite game has a mixed strategy Nash equilibrium.

- Implication: matching pennies necessarily has a mixed strategy equilibrium.
- Why is this important?
- Without knowing the existence of an equilibrium, it is difficult (perhaps meaningless) to try to understand its properties.
- Armed with this theorem, we also know that every finite game has an equilibrium, and thus we can simply try to locate the equilibria.

Proof

- Recall that σ^{*} is a (mixed strategy) Nash Equilibrium if for each player i,

$$
u_{i}\left(\sigma_{i}^{*}, \sigma_{-i}^{*}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}^{*}\right) \quad \text { for all } \sigma_{i} \in \Sigma_{i}
$$

- Define the best response correspondence for player $i B_{i}: \Sigma_{-i} \rightrightarrows \Sigma_{i}$ as

$$
B_{i}\left(\sigma_{-i}\right)=\left\{\sigma_{i}^{\prime} \in \Sigma_{i} \mid u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right) \geq u_{i}\left(\sigma_{i}, \sigma_{-i}\right) \text { for all } \sigma_{i} \in \Sigma_{i}\right\} .
$$

- Define the set of best response correspondences as

$$
B(\sigma)=\left[B_{i}\left(\sigma_{-i}\right)\right]_{i \in \mathcal{I}} .
$$

- Clearly

$$
B: \Sigma \rightrightarrows \Sigma
$$

Proof (continued)

- The idea is to apply Kakutani's theorem to the best response correspondence $B: \Sigma \rightrightarrows \Sigma$. We show that $B(\sigma)$ satisfies the conditions of Kakutani's theorem.
- Σ is compact, convex, and non-empty.
- By definition

$$
\Sigma=\prod_{i \in \mathcal{I}} \Sigma_{i}
$$

where each $\Sigma_{i}=\left\{x \mid \sum x_{i}=1\right\}$ is a simplex of dimension $\left|S_{i}\right|-1$, thus each Σ_{i} is closed and bounded, and thus compact. Their finite product is also compact.

- $B(\sigma)$ is non-empty.
- By definition,

$$
B_{i}\left(\sigma_{-i}\right)=\arg \max _{x \in \Sigma_{i}} u_{i}\left(x, \sigma_{-i}\right)
$$

where Σ_{i} is non-empty and compact, and u_{i} is linear in x. Hence, u_{i} is continuous, and by Weirstrass's theorem $B(\sigma)$ is non-empty.

Proof (continued)

3. $B(\sigma)$ is a convex-valued correspondence.

- Equivalently, $B(\sigma) \subset \Sigma$ is convex if and only if $B_{i}\left(\sigma_{-i}\right)$ is convex for all i. Let $\sigma_{i}^{\prime}, \sigma_{i}^{\prime \prime} \in B_{i}\left(\sigma_{-i}\right)$.
- Then, for all $\lambda \in[0,1] \in B_{i}\left(\sigma_{-i}\right)$, we have

$$
\begin{array}{ll}
u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right) \geq u_{i}\left(\tau_{i}, \sigma_{-i}\right) & \text { for all } \tau_{i} \in \Sigma_{i} \\
u_{i}\left(\sigma_{i}^{\prime \prime}, \sigma_{-i}\right) \geq u_{i}\left(\tau_{i}, \sigma_{-i}\right) & \text { for all } \tau_{i} \in \Sigma_{i}
\end{array}
$$

- The preceding relations imply that for all $\lambda \in[0,1]$, we have

$$
\lambda u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)+(1-\lambda) u_{i}\left(\sigma_{i}^{\prime \prime}, \sigma_{-i}\right) \geq u_{i}\left(\tau_{i}, \sigma_{-i}\right) \quad \text { for all } \tau_{i} \in \Sigma_{i}
$$

By the linearity of u_{i},

$$
u_{i}\left(\lambda \sigma_{i}^{\prime}+(1-\lambda) \sigma_{i}^{\prime \prime}, \sigma_{-i}\right) \geq u_{i}\left(\tau_{i}, \sigma_{-i}\right) \quad \text { for all } \tau_{i} \in \Sigma_{i} .
$$

Therefore, $\lambda \sigma_{i}^{\prime}+(1-\lambda) \sigma_{i}^{\prime \prime} \in B_{i}\left(\sigma_{-i}\right)$, showing that $B(\sigma)$ is convex-valued.

Proof (continued)

4. $B(\sigma)$ has a closed graph.

- Supposed to obtain a contradiction, that $B(\sigma)$ does not have a closed graph.
- Then, there exists a sequence $\left(\sigma^{n}, \hat{\sigma}^{n}\right) \rightarrow(\sigma, \hat{\sigma})$ with $\hat{\sigma}^{n} \in B\left(\sigma^{n}\right)$, but $\hat{\sigma} \notin B(\sigma)$, i.e., there exists some i such that $\hat{\sigma}_{i} \notin B_{i}\left(\sigma_{-i}\right)$.
- This implies that there exists some $\sigma_{i}^{\prime} \in \Sigma_{i}$ and some $\epsilon>0$ such that

$$
u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)>u_{i}\left(\hat{\sigma}_{i}, \sigma_{-i}\right)+3 \epsilon .
$$

- By the continuity of u_{i} and the fact that $\sigma_{-i}^{n} \rightarrow \sigma_{-i}$, we have for sufficiently large n,

$$
u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}^{n}\right) \geq u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}\right)-\epsilon .
$$

Proof (continued)

- [step 4 continued] Combining the preceding two relations, we obtain

$$
u_{i}\left(\sigma_{i}^{\prime}, \sigma_{-i}^{n}\right)>u_{i}\left(\hat{\sigma}_{i}, \sigma_{-i}\right)+2 \epsilon \geq u_{i}\left(\hat{\sigma}_{i}^{n}, \sigma_{-i}^{n}\right)+\epsilon,
$$

where the second relation follows from the continuity of u_{i}. This contradicts the assumption that $\hat{\sigma}_{i}^{n} \in B_{i}\left(\sigma_{-i}^{n}\right)$, and completes the proof.

- The existence of the fixed point then follows from Kakutani's theorem.
- If $\sigma^{*} \in B\left(\sigma^{*}\right)$, then by definition σ^{*} is a mixed strategy equilibrium.

MIT OpenCourseWare
http://ocw.mit.edu

14.15J / 6.207J Networks

Fall 2009

For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms.

