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Networks: Lecture 11 Nash Equilibrium 

Existence of Equilibria for Infinite Games 

A similar theorem to Nash’s existence theorem applies for pure 
strategy existence in infinite games. 

Theorem 

(Debreu, Glicksberg, Fan) Consider an infinite strategic form game 
�I, (Si )i∈I , (ui )i∈I � such that for each i ∈ I 

Si is compact and convex; 

ui (si , s−i ) is continuous in s−i ; 

ui (si , s−i ) is continuous and concave in si [in fact quasi-concavity 
suffices]. 

Then a pure strategy Nash equilibrium exists. 
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Networks: Lecture 11 Nash Equilibrium 

Definitions


Suppose S is a convex set. Then a function f : S R is concave if→
for any x , y ∈ S and any λ ∈ [0, 1], we have 

f (λx + (1 − λ)y) ≥ λf (x) + (1 − λ)f (y) . 
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Proof


Now define the best response correspondence for player i ,

Bi : S−i � Si ,


Bi (s−i ) = si
� ∈ Si | ui (si

�, s−i ) ≥ ui (si , s−i ) for all si ∈ Si . 

Thus restriction to pure strategies. 

Define the set of best response correspondences as 

B (s) = [Bi (s−i )]i∈I .


and

B : S � S . 
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Proof (continued) 

We will again apply Kakutani’s theorem to the best response 
correspondence B : S � S by showing that B(s) satisfies the 
conditions of Kakutani’s theorem. 

S is compact, convex, and non-empty. 

By definition � 
S = Si 

i∈I 

since each Si is compact [convex, nonempty] and finite product of 
compact [convex, nonempty] sets is compact [convex, nonempty]. 

B(s) is non-empty. 

By definition,

Bi (s−i ) = arg max ui (s, s−i )


s∈Si 

where Si is non-empty and compact, and ui is continuous in s by 
assumption. Then by Weirstrass’s theorem B(s) is non-empty. 
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Proof (continued) 

3.	 B(s) is a convex-valued correspondence. 

This follows from the fact that ui (si , s−i ) is concave [or quasi-concave] 
in si . Suppose not, then there exists some i and some s−i ∈ S−i such 
that Bi (s−i ) ∈ arg maxs∈Si ui (s, s−i ) is not convex. 
This implies that there exists si

�, si
�� ∈ Si such that si

�, si
�� ∈ Bi (s−i ) and 

λsi
� + (1 − λ)si

�� ∈/ Bi (s−i ). In other words, 

λui (si
�, s−i ) + (1 − λ)ui (si

��, s−i ) > ui (λsi
� + (1 − λ) si

��, s−i ). 

But this violates the concavity of ui (si , s−i ) in si [recall that for a 
concave function f (λx + (1 − λ)y) ≥ λf (x) + (1 − λ)f (y)]. 
Therefore B(s) is convex-valued. 

4.	 The proof that B(s) has a closed graph is identical to the previous 
proof. 
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Existence of Nash Equilibria 

Can we relax concavity? 

Example: Consider the game where two players pick a location 
s1, s2 ∈ R2 on the circle. The payoffs are 
u1(s1, s2) = −u2(s1, s2) = d(s1, s2), where d(s1, s2) denotes the 
Euclidean distance between s1, s2 ∈ R2 . 

No pure Nash equilibrium. 

However, it can be shown that the strategy profile where both mix 
uniformly on the circle is a mixed Nash equilibrium. 
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A More Powerful Theorem


Theorem 

(Glicksberg) Consider an infinite strategic form game �I, (Si )i∈I , (ui )i∈I �
such that for each i ∈ I 

Si is nonempty and compact; 

ui (si , s−i ) is continuous in si and s−i . 

Then a mixed strategy Nash equilibrium exists. 

The proof of this theorem is harder and we will not discuss it. 

In fact, finding mixed strategies in continuous games is more 
challenging and is beyond the scope of this course. 
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Extensive Form Games


Extensive-form games model multi-agent sequential decision making. 

For now, we will focus is on multi-stage games with observed actions. 

Extensive form represented by game trees. 

Additional component of the model, histories (i.e., sequences of

action profiles).


Extensive form games will be useful when we analyze dynamic games, 
in particular, to understand issues of cooperation and trust in groups. 
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Histories 

Let Hk denote the set of all possible stage-k histories 

Strategies are maps from all possible histories into actions: 
si
k : Hk → Si 

Player 1

C D

E F G H

Player 2

(2,1) (3,0) (0,2) (1,3)

Example: 

Player 1’s strategies: s1 : H0 = ∅ → S1; two possible strategies: C,D 
Player 2’s strategies: s2 : H1 = {C , D} → S2; four possible strategies. 
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Strategies in Extensive Form Games 

Consider the following two-stage extensive form version of matching 
pennies. 

Player 1

H T

H T H T

Player 2

(-1,1) (1,-1) (1,-1) (-1,1)

How many strategies does player 2 have? 
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Strategies in Extensive Form Games (continued) 

Recall: strategy should be a complete contingency plan. 

Therefore: player 2 has four strategies: 

heads following heads, heads following tails (HH,HT); 
heads following heads, tails following tails (HH, TT); 
tails following heads, tails following tails (TH, TT); 
tails following heads, heads following tails (TH, HT). 
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Strategies in Extensive Form Games (continued) 

Therefore, from the extensive form game we can go to the strategic 
form representation. For example: 

Player 1/Player 2 (HH, HT ) (HH, TT ) (TH, TT ) (TH, HT ) 
heads 
tails 

(−1, 1) 
(1, −1) 

(−1, 1) 
(−1, 1) 

(1, −1) 
(−1, 1) 

(1, −1) 
(1, −1) 

So what will happen in this game? 
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Strategies in Extensive Form Games (continued) 

Can we go from strategic form representation to an extensive form 
representation as well? 
To do this, we need to introduce information sets. If two nodes are in 
the same information set, then the player making a decision at that 
point cannot tell them apart. The following two extensive form games 
are representations of the simultaneous-move matching pennies. 
These are imperfect information games. 
Note: For consistency, first number is still player 1’s payoff. 

Player 1

Player 2

H T

H T H T

(-1,1) (1,-1) (1,-1) (-1,1)

Player 2

H T

H T H T

Player 1

(-1,1) (1,-1) (1,-1) (-1,1)
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Entry Deterrence Game 

Entrant

In Out

A F

Incumbent

(2,1) (0,0)

(1,2)

Equivalent strategic form representation 

Entrant\Incumbent 
In 

Out 

Accommodate 
(2, 1) 
(1, 2) 

Fight 
(0, 0) 
(1, 2) 

Two pure Nash equilibria: (In,A) and (Out,F). 
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Are These Equilibria Reasonable? 

The equilibrium (Out,F) is sustained by a noncredible threat of the 
monopolist 

Equilibrium notion for extensive form games: Subgame Perfect 
(Nash) Equilibrium 

It requires each player’s strategy to be “optimal” not only at the start 
of the game, but also after every history 

For finite horizon games, found by backward induction 

For infinite horizon games, characterization in terms of one-stage 
deviation principle. 
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Subgames 

Recall that a game G is represented by a game tree. Denote the set 
of nodes of G by VG . 

A game has perfect information if all its information sets are 
singletons (i.e., all nodes are in their own information set). 

Recall that history hk denotes the play of a game after k stages. In a 
perfect information game, each node v ∈ VG corresponds to a unique 
history hk and vice versa. This is not necessarily the case in imperfect 
or incomplete information games. 

We say that an information set (consisting of a set of nodes) X ∈ VG 

is a successor of node y , or X � y , if in the game tree we can reach 
information set X through y . 
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Subgames (continued) 

Definition 

(Subgames) A subgame G � of game G is given by the set of nodes 

x
G

in the game tree of G that are successors of some node x ∈ V
and are not successors of any node z ∈/ V
exists an information set (possibly singleton) Y such that y ∈ Y and 

x
G

x
G

V
xG ⊂ VG 
x
G 

; i.e., for all y ∈ V
 , there


Y � x and there does not exist z ∈/ V
 such that Y � z.


A restriction of a strategy s subgame G �, s|G � is the action profile 
implied by s in the subgame G �. 

19 



Player 1

H T

H T H T

Player 2
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Subgames: Examples 

Recall the two-stage extensive-form version of the matching pennies 
game 

In this game, there are two proper subgames and the game itself 
which is also a subgame, and thus a total of three subgames. 
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Subgame Perfect Equilibrium 

Definition 

(Subgame Perfect Equilibrium) A strategy profile s∗ is a Subgame 
Perfect Nash equilibrium (SPE) in game G if for any subgame G � of G, 
s∗|G � is Nash equilibrium of G �. 

Loosely speaking, subgame perfection will remove noncredible threats, 
since these will not be Nash equilibria in the appropriate subgames. 

In the entry deterrence game, following entry, F is not a best

response, and thus not a Nash equilibrium of the corresponding

subgame. Therefore, (Out,F) is not a SPE.


How to find SPE? One could find all of the Nash equilibria, for 
example as in the entry deterrence game, then eliminate those that 
are not subgame perfect. 

But there are more economical ways of doing it. 
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Backward Induction


Backward induction refers to starting from the last subgames of a 
finite game, then finding the Nash equilibria or best response strategy 
profiles in the subgames, then assigning these strategies profiles to be 
subgames, and moving successively towards the beginning of the 
game. 

Entrant

In Out

A F

Incumbent

(2,1) (0,0)

(1,2)
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Backward Induction (continued)


Theorem 

Backward induction gives the entire set of SPE. 

Proof: backward induction makes sure that in the restriction of the 
strategy profile in question to any subgame is a Nash equilibrium. 
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Existence of Subgame Perfect Equilibria 

Theorem 

Every finite perfect information extensive form game G has a pure strategy 
SPE. 

Proof: Start from the end by backward induction and at each step one 
strategy is best response. 

Theorem 

Every finite extensive form game G has a SPE. 

Proof: Same argument as the previous theorem, except that some 
subgames need not have perfect information and may have mixed strategy 
equilibria. 
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Examples: Value of Commitment 

Consider the entry deterrence game, but with a different timing as 
shown in the next figure. 

Entrant

Incumbent

In Out

A F

(2,1) (1,2) (0,0)

In Out

(1,2)

Note: For consistency, first number is still the entrant’s payoff. 
This implies that the incumbent can now commit to fighting (how 
could it do that?). 
It is straightforward to see that the unique SPE now involves the

incumbent committing to fighting and the entrant not entering.

This illustrates the value of commitment. 
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Examples: Stackleberg Model of Competition 

Consider a variant of the Cournot model where player 1 chooses its 
quantity q1 first, and player 2 chooses its quantity q2 after observing 
q1. Here, player 1 is the Stackleberg leader. 

Suppose again that both firms have marginal cost c and the inverse 
demand function is given by P (Q) = α − βQ, where Q = q1 + q2, 
where α > c . 

This is a dynamic game, so we should look for SPE. How to do this? 

Backward induction—this is not a finite game, but all we have seen 
so far applies to infinite games as well. 

Look at a subgame indexed by player 1 quantity choice, q1. Then 
player 2’s maximization problem is essentially the same as before 

max π2 (q1, q2) = [P (Q) − c] q2 
q2≥0 

= [α − β (q1 + q2) − c] q2. 
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Stackleberg Competition (continued) 

This gives best response 

α − c − βq1 
q2 = . 

2β 

Now the difference is that player 1 will choose q1 recognizing that 
player 2 will respond with the above best response function. 

Player 1 is the Stackleberg leader and player 2 is the follower. 
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Stackleberg Competition (continued) 

This means player 1’s problem is 

maximizeq1≥0 π1 (q1, q2) = [P (Q) − c] q1 

subject to q2 = 
α − c − βq1 

. 
2β 

Or � � � � 

max α − β q1 + 
α − c − βq1 

q1. 
q1≥0 2β 

− c 
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Stackleberg Competition (continued) 

The first-order condition is 

α − β q1 + 
α − c 

2β 
− βq1 − c − 

β 
2 

q1 = 0, 

which gives


And thus


α − c
S q1 = .

2β


α − c 
< q
S q2 = S 

14β


Why lower output for the follower? 

Total output is 
3 (α − c)


QS = q
S S+ q
 =
1 2 ,

4β


which is greater than Cournot output. Why? 

29 



For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

MIT OpenCourseWare
http://ocw.mit.edu 


14.15J / 6.207J Networks
Fall 2009




For information about citing these materials or our Terms of Use,visit: http://ocw.mit.edu/terms. 

 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Networks: Lecture 11
	Introduction
	Nash Equilibrium
	Extensive Form Games
	Applications




