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Networks: Lecture 16 Introduction 

Outline


The role of networks in cooperation 

A model of social norms 

Cohesion of groups and social norms 

Trust in networks 

Reading: 

Osborne, Chapters 14 and 15. 
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Networks: Lecture 16 Introduction 

The Role of Social Networks


Recall the importance of “social contacts” in finding jobs. Especially 
of “weak ties” (e.g., Granovetter (1973) “The Strength of Weak 
Ties”: most people find jobs through acquaintances not close friends. 

The idea is that recommendations from people you know are more 
trusted. 

Similarly, social networks important in starting businesses? 

Recall that in many developing economies (but also even in societies 
with very strong institutions), networks of “acquaintances and 
contacts” shape business behavior. (e.g., Munshi (2009) “Strength in 
Numbers: A Network-Based Solution to Occupational Traps”). 

The Indian diamond industry is dominated by a few small subcasts, 
the Marwaris, the Palanpuris, the Kathiawaris—in the same way that 
Antwerp and New York diamond trade used to be dominated by 
ultra-Orthodox Jews. 
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Networks: Lecture 16 Introduction 

Trust in Networks


The rise of the Kathiawaris most likely related to their close-knit

network.

When the Marwaris and the Palanpuris institutionalized their

relationship with Antwerp (often opening branches of their firms

there). Moreover, over time, lower intermarriage rates for these

groups. Network relationships seem to matter less.

The Kathiawaris initially a lower, agricultural subcast, some of them 
working as cutters for the Marwaris and the Palanpuris. Strong 
network ties, intermarriage rates etc. After the increase in the world 
supply of rough diamonds in the 1970s (following the opening the 
Australia’s Argyle Mines), the Kathiawaris slowly dominate the 
business. Mutual support, referrals, long-term relationships based on 
networks. 
Recall that Munshi’s argument was that network connections helped 
the Kathiawaris pull ahead of the richer and more established 
Marwaris and Palanpuris. 
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Networks: Lecture 16 Introduction 

Trust in Networks (continued) 

Perhaps trust is more difficult when the network is larger. 

The Marwari and the Palanpuri businessmen were sufficiently more 
established, so they did not depend on their subcast links, so 
implicitly reneging on their long-term relationships within their cast 
would have carried relatively limited costs for them. 

But if so, then there would be little “trust” in the network of the 
Marwaris and the Palanpuris. 

In contrast, the Kathiawaris strongly depended on their network, so 
any reneging (or appearance of reneging) would lead to their 
exclusion from the business community supporting them forever—and 
this support is very valuable to the Kathiawaris. 

Thus in this example, after a certain level, fewer links may be 
better—to make one more dependent on his network and thus more 
trustworthy. 
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Networks: Lecture 16 Introduction 

Social Norms 

Even in broader social groupings, some types of implicit

understanding on expected behavior important.


We sometimes refer to these as social norms: how to dress, how to 
interact with others, limits on socially costly selfish behavior, etc. 

How are they supported? 

This lecture: using repeated games to understand social norms and 
trust in social networks. 
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Networks: Lecture 16 Models of Social Norms 

Modeling Social Norms 

We will think of social norms as the convention—expected play—in 
the game. The key question is whether a particular social norm is 
sustainable as the equilibrium in society. 
Consider a society consisting of N players playing an 
infinitely-repeated symmetric two-player strategic form game 
G = ⟨ℐ, A, u⟩. 
Throughout N is a large number. 
Here A denotes the set of actions at each stage, and thus 

ui : A × A ℝ. (
) 

→ 

t
i

t
j

)
is played at stage t between players i and j 

t
jThat is, u
 is the state payoff to player i when action profile
a
 , a
(

We will think of a social norm simply as an action a∗ ∈ A that all 

t t
i = i .∕a
 =
 a
 , a


players are expected to play. 
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Networks: Lecture 16 Models of Social Norms 

Modeling Social Norms (continued) 

Suppose, to start with, that players are matched randomly at each 
date (you may wish to think that N is even). 

Let ai be the sequence of plays for player i , i.e., {( )}
t t 

∞
ai = ai , aj(i ,t) , where j (i , t) denotes the player matched to i 

t=0 
at time t. 

The payoff of player i is then 

∑∞
U(ai ) = �t u(ai

t , aj
t 
(i ,t)) 

t=0 

where � ∈ [0, 1) is again the discount factor. 
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Networks: Lecture 16 Models of Social Norms 

Full Monitoring 

Full monitoring applies when players observe the entire history of 
past actions. 

For example, they observe the entire history of play in each random 
match. 

With full monitoring, the following personalized trigger strategies 
are possible. 

If individual i deviates from the social norm a∗ at time t, everybody 
observes this, and will play some punishment action a ∈ A against i 
(they can still cooperate with other players). 

Then the arguments from standard repeated games (in particular the 
folk theorems) immediately imply the following theorem. 
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Networks: Lecture 16 Models of Social Norms 

Full Monitoring Theorem 

Theorem 

Let aNE be a static equilibrium of the stage game. With full monitoring, 
for any a ∈ A with u (a, a) > u 

(
aNE , aNE 

)
, there exists some � < 1 such 

that for all � > �, there exists an equilibrium supporting social norm a. 

Proof (essentially identical to the proof of the folks theorems): 

Deviation has some benefit ū now and thus overall return ( )
NE NEu a , a

ū + � ,
1 − � 

since all other players will punish the deviator (e.g., playing the NE). 
u(a,a)Cooperation has return 1−� . 

Therefore, 
¯

(
aNE , aNE 

)


� ≥ � ≡ 
u − 

u

u 

− u (a, a) 
∈ (0, 1)


¯

guarantees that the social norm of cooperation is sustainable. 
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Networks: Lecture 16 Models of Social Norms 

Application 

Recall the prisoners’ dilemma: 

Cooperate Defect 
Cooperate 1, 1 −1, 2 
Defect 2, −1 0, 0 

In this game, (C , C ), that is “cooperation,” can be supported as the 
social norm in society when � ≥ 1/2. 
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Networks: Lecture 16 Models of Social Norms 

Problems with Full Monitoring 

Full monitoring too “unrealistic”. It means that social norms are 
supported by each individual knowing what everybody else in the 
society does. 

More likely, individuals know their own experiences, and perhaps what 
is happening to their neighbors, friends and coworkers. 

This implies social network structure will matter. 
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Networks: Lecture 16 Models of Social Norms 

Pure Private Histories


The other extreme from full monitoring is a situation in which each 
individual only observes what has happened to themselves. 

For example, in the prisoners’ dilemma game, a player will be matched 
with a different partner every period, and then play cooperate or 
defect, and will only know his or her experience in the past. 

With N large, one might first conjecture that cooperation is

impossible to sustain in this society.


Either individuals do not even remember the identity of their past 
partners (fully anonymous), in which case one might conjecture that 
the strategy of “defect” will have no future cost for a player (if there 
was indeed the social norm of cooperation). 
Or individuals remember the identity of their past partners, but in this 
case, the cost of having “a bad reputation” against a single player is 
not too high, since with N large, this player will not be met again in 
the future. 
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Networks: Lecture 16 Models of Social Norms 

Pure Private Histories (continued) 

However, Kandoori (1994) showed that contagion strategies can 
support cooperation. 

Contagion strategies involve each player defecting in all future periods 
if they observe any deviation in their private history. 

The name “contagion” comes from the fact that, under this strategy, 
defection will spread in a contagious manner and “invade” 
cooperative behavior. 

Therefore, a player who defects will recognize that ultimately 
everybody in the society will start defecting because of contagion, and 
this will have a negative effect on her future payoffs. 

If the discount factor is sufficiently close to 1, defecting will not be 
profitable. 
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Networks: Lecture 16 Models of Social Norms 

Pure Private Histories (continued) 

Theorem 

Let aNE be a static equilibrium of the stage game. With private ( )
monitoring, for any a ∈ A with u (a, a) > u aNE , aNE and any N < ∞, 
there exists some � < 1 such that for all � > �, the social norm of playing 
a can be supported. 

A proper proof of this theorem requires us to consider dynamic games 
of incomplete information, since when a player experiences a defection 
(an action different from a), she does not know whether this is 
because her partner is deviating or whether because she is in the 
middle of a contagious phase. 

But verifying that it is a Nash equilibrium can be done with the

concepts we have developed so far.
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Networks: Lecture 16 Models of Social Norms 

Proof Sketch


First, we give the idea of the proof. Suppose all other players are 
cooperating, in the sense of playing a. Then cooperation has payoff 

u (a, a) 
. 

1 − � 

If a player deviates, she will obtain u (a ′ , a) > u (a, a) today and also 
again in the future against all others who are still playing a. Against 
others who have been reached by the contagious deviation, she will { ( ) ( )}
obtain no more than u = max u a ′ , aNE , u aNE , aNE < u (a, a). 

Loosely speaking, because the society is finite (N < ∞), almost all 
players will be ultimately reached by the contagious deviation in finite 
time. 

Therefore for � arbitrarily close to 1, cooperation is better than 
defection. 
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Networks: Lecture 16 Models of Social Norms 

Proof Sketch (continued) 

More explicitly, the contagion process induces the number of agents 
who are playing aNE to increase as in the Bass model of disease 
diffusion. 

In particular, let x (t) denote the number of agents playing aNE . 

Each agent currently playing a (who has not been reached by the 
contagion) has probability equal to x (t) / (N − 1) of matching 
against an agent playing aNE and thus switching his behavior 
thereafter. 

With a mean field type approximation, the law of motion of x (t) can 
therefore be written as 

x (t) 
x (t + 1) ≃ x (t) + (N − x (t)) × 

N − 1
, 

≃ x (t) + x (t) × 
N − 

N

x (t) 
. 
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Networks: Lecture 16 Models of Social Norms 

Proof Sketch (continued) 

With a differential equation approximation, we have ( )
x (t) 

ẋ (t) ≃ x (t) 1 − 
N 

with initial condition x (0) = 1. 
The solution to this differential equation is 

N (et+c ) 
x (t) = ,

1 + et+c 

where c is the constant of integration, given by ( )
1 

c = log . 
N − 1

Thus alternatively, 
Net 

x (t) = ,
N − 1 + et 

Clearly, x (t) → N as t → ∞. 
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Networks: Lecture 16 Models of Social Norms 

Proof Sketch (continued) 

Moreover, for T ≥ T ′, we have x (t) ≥ N − M, where 

T ′ = log (N − M) + log N − log M. 

An upper bound on the payoff to deviating is 

1 − �T ′+1 ( )
Ud = u a′ , a NE + �T ′ ũ,


1 − �

where { ( ) }


ũ = max 
N − M

u ã, a NE + 
M

u (ã, a)
ã∈A N N 

is the maximum payoff that the deviator can obtain after time T ′ , 
where at least N − M people have switched to the Nash equilibrium 
of the stage game with probability arbitrarily close to 1. For N 
sufficiently large and M sufficiently small, we have ũ < u (a, a). 
This is an upper bound on deviation payoff, since in reality the ( )
deviator will not obtain u a ′ , aNE for the T ′ periods. 
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Networks: Lecture 16 Models of Social Norms 

Proof Sketch (continued)   

Now comparing Ud to the payoff from following the social norm, 
Uc = u (a, a) / (1 − �), we have that the social norm of playing a will 
be sustainable if ( ) ( )

u (a, a) ≥ 1 − �T ′+1 u a′ , a NE + (1 − �) �T ′ ũ. 

Clearly, this inequality is satisfied as � 1. Therefore, there exists →
� < 1 such that if


� ≥ �,


this inequality is still satisfied and the social norm of cooperation can 
be supported with private histories. 
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Networks: Lecture 16 Small Groups and Local Interactions 

Value of Small Groups 

The example of the Kathiawaris suggests that perhaps the social 
norm of cooperation in small groups is easier to sustain. 

Intuitively, this is easy to answer. 

Imagine a society has N members. Contagion will take a long time if 
N is large. But if N is divided into N/M groups, most interacting 
within themselves, then contagion of your partners will be faster. 

As a result, cooperation can be sustained for smaller values of the 
discount factor �. 
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Networks: Lecture 16 Small Groups and Local Interactions 

Value of Local Interactions


Is it just the size of the groups or the structure of interactions? 

In social networks, local interactions are important. 

For example, society consisting of N members will exhibit different 
behavior when there is random matching vs. when individuals just 
interact with their neighbors over a circle. 

Typically, local interactions facilitate sustaining the social norm of 
cooperation. 
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Networks: Lecture 16 Small Groups and Local Interactions 

Example 

Consider the prisoners’ dilemma played on the circle. At each date, a 
player will play this stage game with one of his two neighbors. 

Cooperate Defect 
Cooperate 1, 1 −1, 2 
Defect 2, −1 0, 0 

Optimal deviation would be to defect against your opponent at t = 0 
and then against your other opponent whenever you are matched with 
them. 

What is the likelihood that your other neighbor starts defecting before 
you are matched with them? 

For a sufficiently large Circle, there is probability approximately equal 
to 1 that your other neighbor is still playing cooperate by the time 
you match with them. 
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Networks: Lecture 16 Small Groups and Local Interactions 

Example (continued) 

Then expected utility from defection is 

Ud = 2 + 
1 
� (2 + 0 + ...)

2( ( ))
1 1 1 1 

+ � 0 + � (2 + 0 + ...) + � 0 + � (2 + 0 + ...) + ...
2 2 2 2 

= 2 + . 
1 − �/2 

Intuition: each period there is probability 1/2 that you will match 
with your other neighbor who is still playing cooperate. 

Expected utility from cooperation is 

1 
Uc = . 

1 − � 

Therefore, cooperation can be sustained as a social norm if � ≥ 2/3.
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Networks: Lecture 16 Small Groups and Local Interactions 

Example (continued) 

Now imagine the same structure with three neighbors. With the same 
reasoning ( ( ) )
Ud = 2 + 

2 
� 2 + 

1 
� (2 + 0 + ...) + 

2 
� 0 + 

1 
� (2 + 0 + ...) ...

3 3 3 3 ( ( ) )
1 2 1 

+ � 0 + � 2 + � (2 + 0) + ... + ...
3 3 3 

With similar computations, cooperation cannot be sustained as the 
social norm if � is greater than approximately 8/9. 

So having three neighbors instead of two significant increases the 
threshold. 
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Networks: Lecture 16 Cohesiveness 

Cohesiveness 

Does the “cohesiveness” of a group matter? 

Different ways of thinking of cohesiveness. 

One possibility is that cohesive groups do not interact well with other 
groups. 

This type of cohesiveness may facilitate cooperation. 
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Networks: Lecture 16 Cohesiveness 

Modified Prisoners’ Dilemma 

Consider a society consisting of M groups. 

Histories are observable within groups, so if an individual defects, all 
group members learn this immediately and can play accordingly. 

Other groups do not possess this information. 

Suppose the game is given by 

Cooperate Defect Punish 
Cooperate 3x , 3x −x , 6x 0, 0 
Defect 6x , −x 2x , 2x 0, 0 
Punish 0, 0 0, 0 0, 0 

Cohesiveness is captured by the fact that x = xh when playing against 
your own group and x = xl < xh when playing against another group 
(xl > 0). 
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Networks: Lecture 16 Cohesiveness 

The Effects of Cohesiveness


Suppose that an individual can play this game within his group or 
leave his group and play against a member of one of the other groups. 

The minmax payoff here is 0. So the group can coordinate to hold 
down a defector to a payoff of zero. 

Individuals that decide to leave their group are randomly matched to 
a member of a different group and are anonymous, and the outcome 
of this game is not observed to other group members of either player. 
This implies that minmax strategies are not possible when two 
individuals from different groups play. 

Therefore, optimal to quit the group after defection. 

When can cooperation be sustained? 
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Networks: Lecture 16 Cohesiveness 

The Effects of Cohesiveness (continued) 

Without defection in any group, each individual will play within his 
group, and thus opting payoff of 

3xh
Uc = . 

1 − � 

After defection, individual will leave and play against somebody from 
a different group. Because this game is anonymous, both players will 
defect, and thus the payoff to defection is 

Ud = 6xh + � 
2xl 

. 
1 − � 
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Networks: Lecture 16 Cohesiveness 

The Effects of Cohesiveness (continued) 

Therefore, Uc ≥ Ud if 

3xh 2xl

1 − � 

≥ 6xh + � 
1 − �


or if 
3 

.� ≥ 
6 − 2xl /xh 

If xl /xh = 0, cohesiveness is strong enough that outside options are as 
bad as staying in the group after defecting, and the social norm of 
cooperation can be sustained for any � ≥ 1/2. If xl /xh is close to 1, 
then outside options after cheating are good, and the social norm of 
cooperation can be sustained only if � ≥ 3/4. 
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Networks: Lecture 16 Trust in Networks 

Trust in Networks 

Social networks also can act as conduits of “trust”. 

Consider a network consisting of three individuals, 1, 2 and 3. 1 and 2 
and 2 and 3 interact frequently and trust each other. 

Suppose now that there is a transaction between 1 and 3. 

Can they leverage the fact that they both know 2 and use this to 
trust each other? 

How is this trust sustained? We would require that 2 observes the 
outcome of the interaction between 1 and 3, and switches from 
cooperating with whoever defects in the relationship between 1 and 3. 

Idea related to importance of social capital. 
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Networks: Lecture 16 Trust in Networks 

Example 

Let us again take prisoners’ dilemma: 

Cooperate Defect 
Cooperate 1, 1 −1, 2 
Defect 2, −1 0, 0 

Suppose that at each date there is probability pij that i and j match 
and play this game. 

Assume that all draws are independent and a player could match with 
two others within the same date (thus no correlation between 
matches). 

All players have discount factor �. Suppose that p13 is small. 

All histories are commonly observed. 

We will contrast the situation in which players 1 and 3 leverage their 
relationship with 2 vs. the one in which they do not. 
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Networks: Lecture 16 Trust in Networks 

Example (continued) 

If there is no leveraging of trust from the network, the pairwise 
relationship between 1 and 3 would work as follows. 

If they cooperate, player 1 would obtain a return of 

Uc = 1 + �p13 + p13�
2 + p13�

3 + ... = 1 + 
�p13 

. 
1 − � 

Defection has payoff

Ud = 2.


Therefore, if

1


� < ,
1 + p13 

cooperation between 1 and 3 is not possible. For p13 small enough, 
meaning a sufficiently weak link between these two players, there will 
not be cooperation (provided that � < 1). 
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Networks: Lecture 16 Trust in Networks 

Example (continued) 

Now imagine that there is leveraging of trust. 

This means that if player 1 or 3 defect against each other, 2 will also 
defect against them in the future. Clearly, this trigger strategy is 
subgame perfect. 

Now we have to analyze the relationship between all players 
simultaneously. In this case, for player i = 1 or 3, we have 

Ūi
c = 1 + � (pi2 + pij ) + (pi2 + pij ) �

2 + (pi2 + pij ) �
3 + ... 

� (pi2 + pij ) 
= 1 + ,


1 − �


where j =∕ i , 2. 
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Networks: Lecture 16 Trust in Networks 

Example (continued) 

Defection for player i against player j then gives 

Ūi
d = 2, 

since player 2 will also play defect thereafter. 

Now, cooperation between 1 and 3 requires 

,Ūi
c ≥ Ūi

d 

or 
1 

.� ≥ 
1 + (pi2 + pij ) 

Even if p13 is small, this condition will be satisfied provided that �, 
p12, and p23 are sufficiently high. 

This is an example of leveraging the network to obtain trust between 
two weakly connected individuals. 
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Networks: Lecture 16 Trust in Networks 

General Insights 

What types of networks will foster trust? 

We can repeat the same analysis with a general weighted graph 
representing interaction structures within a society (group). Then 
cooperation (trust) within the society can be sustained if 

1 
� ≥ 

1 + 
∑ 

j=i pij 
for all i . 

∕

Therefore, generalized trust can be supported if the social network 
has sufficient interactions for all players. 
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General Insights (continued) 

Alternatively, we can have trust only among some players. 

Suppose the set of edges {i , j} ∈ E between which trust can be 
supported is denoted by E T (with the convention that {i , i} ∈/ E T ), 
then we would require that: for all {i , j} ∈ E T , 

1	 1 
� ≥ ( ∑ ) and ≥ ( ∑ )

1 +	 pij + ,k=j pik 1 + pij + ,k=i pjk{i ,k}∈ET ∕ {j ,k}∈ET ∕

This would ensure that neither of the two players wish to deviate for 
.any {i , j} ∈ E T 

But this also implies that E T must be a completely connected 
subgraph of the original graph, in the sense that if {i , j} ∈ E T and 
{i , k} ∈ E T , then we also have {j , k} ∈ E T . (Why?) 
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