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Networks: Lecture 24 Introduction 

Outline


Group and collective choices 

Arrow’s Impossibility Theorem 

Gibbard-Satterthwaite Impossibility Theorem 

Single peaked preferences and aggregation 

Group decisions under incomplete information 

Reading: 

EK, Chapter 23 

Osborne, Chapter 9.7 
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Networks: Lecture 24 Group and Collective Choices 

Collective Choices: Introduction 

How do we think of a group making a collective decision? 

This presupposes some “mechanism” 

for example, bargaining or voting. 

Key question: Will a group make fair, correct and efficient decisions? 

Two sets of issues: 

Aggregating up to collective preferences from individual preferences. 
Using dispersed information of the group efficiently. 
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Networks: Lecture 24 Group and Collective Choices 

Setup 

Abstract economy consisting of a finite set of individuals H, with the 
number of individuals denoted by H. 

Individual i ∈ H has an indirect utility function defined over choices 
available to the group or “policies” p ∈ P 

U (p; αi ) , 

where αi indexes the utility function (i.e., U (p; αi ) = Ui (p)). 

The bliss point of individual i is defined as: 

p (αi ) = arg max U(p; αi ). 
p∈P 
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Networks: Lecture 24 Group and Collective Choices 

Preferences More Generally 

Individual i weakly prefers p to p�,


p �i p
�


and if he has a strict preference, 

p �i p
�. 

Assume: completeness, reflexivity and transitivity (so that z �i z
� and 

z � �i z
�� implies z �i z

��). 
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Networks: Lecture 24 Group and Collective Choices 

Collective Preferences?


Key question: Does there exist welfare function US (p) that ranks 
policies for this group (or society)? 

Let us first start with a simple way of “aggregating” the preferences 
of individuals in the group: majoritarian voting. 

This will lead to the Condorcet paradox. 
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Networks: Lecture 24 Voting and the Condorcet Paradox 

The Condorcet Paradox


Imagine a group consisting of three individuals, 1, 2, and 3, three 
choices and preferences 

1 a � c � b 
2 b � a � c 
3 c � b � a 

Assume “open agenda direct democracy” system for making decisions 
within this group. 

A1. Direct democracy. The citizens themselves make the policy choices 
via majoritarian voting. 
A2. Sincere voting. Individuals vote “truthfully” rather than strategically. 
A3. Open agenda. Citizens vote over pairs of policy alternatives, such 
that the winning policy in one round is posed against a new alternative in 
the next round and the set of alternatives includes all feasible policies. 

What will happen? 
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Networks: Lecture 24 Voting and the Condorcet Paradox 

The Condorcet Paradox


It can be verified that b will obtain a majority against a. 

c will obtain a majority against b. 

But a will obtain a majority against c . 

Thus there will be a cycle. 
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Networks: Lecture 24 Arrow’s Theorem 

Towards Collective Preferences 

How general is the Condorcet cycle?


Arrow’s Impossibility Theorem: very general.


Let us simplify the discussion by assuming that the set of feasible

policies is, P ⊂ RK


Let � be the set of all weak orders on P, that is, � contains

information of the form p1 �i p2 �i p3 and so on, and imposes the

requirement of transitivity on these individual preferences.


An individual ordering Ri is an element of �, that is, Ri ∈ �.


Since our society consists of H individuals, ρ = (R1, ..., RH ) ∈ �H is a

preference profile. 

Also ρ|P � = R1|P � , ..., RH|P � is the society’s preference profile when 
alternatives are restricted to some subset P � of P. 
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Networks: Lecture 24 Arrow’s Theorem 

Restrictions on Collective Preferences I


Let � be the set of all reflexive and complete binary relations on P
(but notice not necessarily transitive). 

A social ordering RS ∈ � is therefore a reflexive and complete binary 
relation over all the policy choices in P: 

φ : �H → �. 

We have already imposed “unrestricted domain,” since no 
restriction on preference profiles. 

A social ordering is weakly Paretian if 

p �i p
� for all i ∈ H = ⇒ p �S p�. 
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Restrictions on Collective Preferences II


Given ρ, a subset D of H is decisive between p, p� ∈ P, if 

p �i p
� for all i ∈ D and p �i � p

� for some i � ∈ D = ⇒ p �S p� 

If D� ⊂ H is decisive between p, p� ∈ P for all preference profiles 
ρ ∈ �H , then it is dictatorial between p, p� ∈ P. 

D ⊂ H is decisive if it is decisive between any p, p� ∈ P 

D� ⊂ H is dictatorial if it is dictatorial between any p, p� ∈ P. 

If D� ⊂ H is dictatorial and a singleton, then its unique element is a 
dictator. 
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Restrictions on Collective Preferences III


A social ordering satisfies independence from irrelevant alternatives, if 
for any ρ and ρ� ∈ �H and any p, p� ∈ P, 

ρ = ρ� = φ (ρ) = φ ρ� .|{p,p�} |{p,p�} ⇒ |{p,p�} |{p,p�} 

This axiom states that if two preference profiles have the same choice 
over two policy alternatives, the social orderings that derive from 
these two preference profiles must also have identical choices over 
these two policy alternatives, regardless of how these two preference 
profiles differ for “irrelevant” alternatives. 

While this condition (axiom) at first appears plausible, it is in fact a 
reasonably strong one. In particular, it rules out any kind of 
interpersonal “cardinal” comparisons—that is, it excludes information 
on how strongly an individual prefers one outcome versus another. 
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Networks: Lecture 24 Arrow’s Theorem 

Arrow’s Impossibility Theorem 

Theorem 

( Arrow’s (Im)Possibility Theorem) Suppose there are at least three 
alternatives. Then if a social ordering, φ, is transitive, weakly Paretian and 
satisfies independence from irrelevant alternatives, it must be dictatorial. 

An immediate implication of this theorem is that any set of minimal 
decisive individuals D within the society H must either be a singleton, 
that is, D = {i}, so that we have a dictatorial social ordering, or we 
have to live with intransitivities. 

Also implicitly, political power must matter. If we wish transitivity, 
political power must be allocated to one individual or a set of 
individuals with the same preferences. 

How do we proceed? Restrict preferences or restrict institutions. → 
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Networks: Lecture 24 Arrow’s Theorem 

Proof of Arrow’s Impossibility Theorem I 

Suppose to obtain a contradiction that there exists a non-dictatorial 
and weakly Paretian social ordering, φ, satisfying independence from 
irrelevant alternatives. Contradiction in two steps. 

Step 1: Let a set J ⊂ H be strongly decisive between p1, p2 ∈ P if 
for any preference profile ρ ∈ �H with p1 �i p2 for all i ∈ J and 
p2 �j p1 for all j ∈ H\J , p1 �S p2 (H itself is strongly decisive since 
φ is weakly Paretian). 

We first prove that if J is strongly decisive between p1, p2 ∈ P, then 
J is dictatorial (and hence decisive for all p, p� ∈ P and for all 
preference profiles ρ ∈ �H ). 

To prove this, consider the restriction of an arbitrary preference profile 
ρ ∈ �H to ρ|{p1,p2,p3} and suppose that we also have p1 �i p3 for all 
i ∈ J . 
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Networks: Lecture 24 Arrow’s Theorem 

Proof of Arrow’s Impossibility Theorem II 

Next consider an alternative profile ρ� , such that
|{p1,p2,p3}


p1 ��i p2 ��i p3 for all i ∈ J and p2 ��i p1 and p2 ��i p3 for all 
i ∈ H\J . 

Since J is strongly decisive between p1 and p2, p1 ��S p2. Moreover, 
since φ is weakly Paretian, we also have p2 ��S p3, and thus 
p1 ��S p2 ��S p3. 

Notice that ρ� did not specify the preferences of individuals |{p1,p2,p3}
i ∈ H\J between p1 and p3, but we have established p1 ��S p3 for 
ρ� .
|{p1,p2,p3}


We can then invoke independence from irrelevant alternatives and 
conclude that the same holds for ρ|{p1,p2,p3}, i.e., p1 �S p3. 

But then, since the preference profiles and p3 are arbitrary, it must be 
the case that J is dictatorial between p1 and p3. 

15 



Networks: Lecture 24 Arrow’s Theorem 

Proof of Arrow’s Impossibility Theorem III 

Next repeat the same argument for ρ and ρ� , except |{p1,p2,p4} |{p1,p2,p4}
that now p4 �i p2 and p4 ��i p1 ��i p2 for i ∈ J , while p2 ��j p1 and 
p4 ��j p1 for all j ∈ H\J . 

Then, the same chain of reasoning, using the facts that J is strongly 
decisive, p1 ��S p2, φ is weakly Paretian and satisfies independence 
from irrelevant alternatives, implies that J is dictatorial between p4 

and p2 (that is, p4 �S p2 for any preference profile ρ ∈ �H ). 

Now once again using independence from irrelevant alternatives and 
also transitivity, for any preference profile ρ ∈ �H , p4 �i p3 for all 
i ∈ J . 

Since p3, p4 ∈ P were arbitrary, this completes the proof that J is 
dictatorial (i.e., dictatorial for all p, p� ∈ P). 
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Proof of Arrow’s Impossibility Theorem IV 

Step 2: Given the result in Step 1, if we prove that some individual 
h ∈ H is strongly decisive for some p1, p2 ∈ P, we will have 
established that it is a dictator and thus φ is dictatorial. Let Dab be 
the strongly decisive set between pa and pb. 

Such a set always exists for any pa, pb ∈ P, since H itself is a 
strongly decisive set. Let D be the minimal strongly decisive set 
(meaning the strongly decisive set with the fewest members). 

This is also well-defined, since there is only a finite number of 
individuals in H. 

Moreover, without loss of generality, suppose that D = D12 (i.e., let 
the strongly decisive set between p1 and p2 be the minimal strongly 
decisive set). 

If D a singleton, then Step 1 applies and implies that φ is dictatorial, 
completing the proof. 
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Proof of Arrow’s Impossibility Theorem V 

Thus suppose that D = {i}. Then, by unrestricted domain, the 
following preference profile (restricted to {p1, p2, p3}) is feasible 

for i ∈ D p1 �i p2 �i p3 

for j ∈ D\{i} p3 �j p1 �j p2 

for k / p2 �k p3 �k p1.∈ D 

By hypothesis, D is strongly decisive between p1 and p2 and therefore 
Sp1 � p2. 

Next if p3 �S p2, then given the preference profile here, D\ {i} would 
be strongly decisive between p2 and p3, and this would contradict 
that D is the minimal strongly decisive set. 
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Proof of Arrow’s Impossibility Theorem VI 

Thus p2 �S p3. Combined with p1 �S p2, this implies p1 �S p3. But 
given the preference profile here, this implies that {i} is strongly 
decisive, yielding another contradiction. 

Therefore, the minimal strongly decisive set must be a singleton {h}
for some h ∈ H. Then, from Step 1, {h} is a dictator and φ is 
dictatorial, completing the proof. 

19 



Networks: Lecture 24 Gibbard-Satterthwaite Theorem 

Gibbard-Satterthwaite Theorem 

Another issue: so far, we have assumed that people will vote 
truthfully (similar to bidding truthfully and second price auctions). 

But will they? 

We say that a social ordering φ : �H → � is strategy proof if when φ 
is being implemented, all individuals have a dominant strategy of 
representing their preferences truthfully. 

More explicitly, we now have a game, in which each individual reports 
preference profile R̂i ∈ R but R̂i need not be the same as the true 
preference of this individual, Ri . 

Question: What types of restrictions does strategy proofness impose? 
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Networks: Lecture 24 Gibbard-Satterthwaite Theorem 

Gibbard-Satterthwaite Theorem


Suppose again unrestricted domain for the preferences.


Theorem 

(Gibbard-Satterwhite Theorem) Suppose there are at least three 
alternatives. Then if a social ordering, φ, is strategy proof, it must be 
dictatorial. 

The proof follows from the following lemma (with proof omitted)


Lemma 

If φ is strategy proof, then it is weakly Paretian and satisfies independence 
from irrelevant alternatives. 

Thus this theorem follows from Arrow’s Theorem. 
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The Condorcet Winner 

We can avoid the Condorcet paradox when there is a Condorcet 
winner. 

Definition 

A Condorcet winner is a policy p∗ that beats any other feasible policy in 
a pairwise vote. 
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Networks: Lecture 24 Single-Peaked Preferences and the Median Voter Theorem 

Single-Peaked Preferences 

Suppose P ⊂ R. 

Definition 

Consider a finite set of P ⊂ R and let p(αi ) ∈ P be individual i ’s unique 
bliss point over P. Then, the policy preferences of citizen i are single 
peaked iff: 

For all p��, p� ∈ P, such that p�� < p� ≤ p(αi ) or p
�� > p� ≥ p(αi ), 

we have U(p��; αi ) < U(p�; αi ). 

Essentially strict quasi-concavity of U 
Median voter: rank all individuals according to their bliss points, the 
p (αi )’s. Suppose that H odd. Then, the median voter is the 
individual who has exactly (H − 1) /2 bliss points to his left and 
(H − 1) /2 bliss points to his right. 
Denote this individual by αm , and his bliss point (ideal policy) by pm. 
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Networks: Lecture 24 Single-Peaked Preferences and the Median Voter Theorem 

Median Voter Theorem


Theorem 

(The Median Voter Theorem) Suppose that H is an odd number, that 
A1 and A2 hold and that all voters have single-peaked policy preferences 
over a given ordering of policy alternatives, P. Then, a Condorcet winner 
always exists and coincides with the median-ranked bliss point, pm. 
Moreover, pm is the unique equilibrium policy (stable point) under the 
open agenda majoritarian rule, that is, under A1-A3. 

This also immediately implies:


Corollary 

With single peaked preferences, there exists a social ordering φ that 
satisfies independence from irrelevant alternatives and that is transitive, 
weakly Paretian and non-dictatorial. 

24 



Networks: Lecture 24 Single-Peaked Preferences and the Median Voter Theorem 

Proof of the Median Voter Theorem 

The proof is by a “separation argument”. 

Order the individuals according to their bliss points p(αi ), and label 
the median-ranked bliss point by pm. 

By the assumption that H is an odd number, pm is uniquely defined 
(though αm may not be uniquely defined). 

Suppose that there is a vote between pm and some other policy 
p�� < pm. 

By definition of single-peaked preferences, for every individual with 
pm < p(αi ), we have U (pm; αi ) > U (p��; αi ). 

By A2, these individuals will vote sincerely and thus, in favor of pm. 

The coalition voting for supporting pm thus constitutes a majority. 

The argument for the case where p�� > pm is identical. 
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Networks: Lecture 24 Single-Peaked Preferences and the Median Voter Theorem 

Median Voter Theorem: Discussion


Odd number of individuals to shorten the statement of the theorem 
and the proof. 

It is straightforward to generalize the theorem and its proof to the 
case in which H is an even number. 

More important: does it also help us against the

Gibbard-Satterthwaite Theorem?


The answer is Yes. 

In particular, with single peaked preferences, sincere voting (truthful 
revelation of preferences) is optimal, which implies strategy 
proofness. 

26 



Networks: Lecture 24 Single-Peaked Preferences and the Median Voter Theorem 

Strategic Voting 

A2�. Strategic voting. Define a vote function of individual i in a pairwise 
contest between p� and p�� by vi (p

�, p��) ∈ {p�, p��}. Let a voting 
(counting) rule in a society with H citizens be V :{p�, p��} H → {p�, p��} for 
any p�, p�� ∈ P. 
Let V (vi (p

�, p��) , v−i (p
�, p��)) be the policy outcome from voting rule V 

applied to the pairwise contest {p�, p��}, when the remaining individuals 
cast their votes according to the vector v−i (p

�, p��), and when individual i 
votes vi (p

�, p��). 
Strategic voting means that � � � � � � � �� � 

vi p�, p�� ∈ arg max U V ṽi p�, p�� , v−i p�, p�� ; αi . 
ṽi (p�,p��) 

Recall that a weakly-dominant strategy for individual i is a strategy 
that gives weakly higher payoff to individual i than any of his other 
strategies regardless of the strategy profile of other players. 
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Median Voter Theorem with Strategic Voting 

Theorem 

(The Median Voter Theorem With Strategic Voting) Suppose that H 
is an odd number, that A1 and A2� hold and that all voters have 
single-peaked policy preferences over a given ordering of policy 
alternatives, P. Then, sincere voting is a weakly-dominant strategy for 
each player and there exists a unique weakly-dominant equilibrium, which 
features the median-ranked bliss point, pm, as the Condorcet winner. 

Notice no more “open agenda”. Why not? 
Why emphasis on weakly-dominant strategies? 

Corollary 

With single peaked preferences, there exists a social ordering φ that 
satisfies independence from irrelevant alternatives and that is strategy 
proof (and transitive, weakly Paretian and non-dictatorial). 
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Proof of the Median Voter Theorem with Strategic Voting 

The vote counting rule (the political system) in this case is

majoritarian, denoted by V M .


Consider two policies p�, p�� ∈ P and fix an individual i ∈ H.


Assume without loss of any generality that U (p�; αi ) ≥ U (p��; αi ).


Suppose first that for any vi ∈ {p�, p��}, V M (vi , v−i (p
�, p��)) = p� or


V M (vi , v−i (p
�, p��)) = p��, that is, individual i is not pivotal.


This implies that vi (p
�, p��) = p� is a best response for individual i .


Suppose next that individual i is pivotal, that is,

V M (vi (p

�, p��) , v−i (p
�, p��)) = p� if vi (p

�, p��) = p� and

V M (vi (p

�, p��) , v−i (p
�, p��)) = p�� otherwise. In this case, the action


vi (p
�, p��) = p� is clearly a best response for i .


Since this argument applies for each i ∈ H, it establishes that voting

sincerely is a weakly-dominant strategy and the conclusion of the

theorem follows.
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Strategic Voting in Sequential Elections 

But sincere voting no longer optimal in dynamic situations.


1 a � b � c

2 b � c � a 
3 c � b � a 

These preferences are clearly single peaked (e.g., alphabetical order). 
Dynamic voting set up: first, a vote between a and b. Then, the 
winner goes against c , and the winner of this is the social choice. 
Sincere voting will imply that in the first round players 2 and 3 will 
vote for b, and in the second round, players 1 and 2 will vote for b, 
which will become the collective choice. 
However, when players 1 and 2 are playing sincerely, in the first round 
player 3 can deviate and vote for a (even though she prefers b), then 
a will advance to the second round and would lose to c . 
Consequently, the social choice will coincide with the bliss point of 
player 3. What happens if all players are voting strategically? 
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Networks: Lecture 24 Juries 

Group Decisions under Incomplete Information 

Consider the following common value decision problem by a group, 
similar to a jury problem. 

Each of n individuals have a prior π that a defendant is guilty, 
denoted by θ = G . (Or this could be some other underlying state 
relevant for the decision). 

The alternative is θ = I (for innocent). 

In addition, each individual receives a signal s = {g , i} (for example, 
from their reading of the evidence presented at the trial). 

Suppose that the signals are conditionally independent and identically 
distributed and satisfy 

Pr (s = g | θ = G ) = p, and 

Pr (s = i | θ = I ) = q 
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Decisions and Payoffs 

Suppose that the group requires unanimity to take a decision x = G . 
This is a natural assumption for juries, but also applies in many 
situations in which there is a status quo. 

Suppose also that each member j of the group has the following 
payoff: ⎧ ⎨ 0 if x = θ 

uj (x , θ) = ⎩ 
−z if x = G and θ = I 

− (1 − z) if x = I and θ = G 

This payoff allows for a wrong conviction to have a different cost than 
a wrong acquittal. 

It also implies that the “optimal” decision is 

x = I if Pr (θ = I | information set) ≤ z . 
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Networks: Lecture 24 Juries 

Bayesian Nash Equilibrium 

The Bayesian Nash equilibrium here has to take into account that 
others will vote according to their signal, which is also informative. 
Throughout let j = 1. Then ⎧ ⎪⎪⎨ ⎪⎪⎩


0 if xj = G for all j = 1 and x1 = G and θ = G 
0 if xj = I for some j = 1 or x1 = I and θ = I 

= 1 and x1 

= I for some j 

u1 (x , θ) = 
if xj = G for all j = G and θ = I
−z


− (1 − z)
 if xj = 1 or x1 = I and θ = G 

The paradox of Nash equilibrium: suppose all others vote 
according to their signal (i.e., xj = sj for all j = 1). Then the utility 
of individual 1 can be written as ⎧ ⎪⎪⎨ ⎪⎪⎩


0 if sj = G for all j = 1 and x1 = G and θ = G 
0 if sj = I for some j = 1 or x1 = I and θ = I 

= 1 and x1 
u1 = −z


− (1 − z)

if sj = G for all j 

= I for some j 
= G and θ = I


= 1 or x1 = I and θ = Gif sj 
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Convicting the Innocent 

In light of this, the relevant probability for an individual to vote 
according to his signal is 

Pr (θ = G | sj = g for all j = 1 and � s1 = b) 

Why? Because if, when all individuals are voting following their 
signals, sj = b for some j = 1, individual 1 is not pivotal. His 
decision does not matter. 
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Convicting the Innocent (continued) 

Now, we have from Bayes rule 

Pr (θ = G | sj = g for all j = 1 and � s1 = b) 

Pr (sj = g for all j = 1 and s1 = b θ = G ) Pr (θ = G ) 

Pr (sj = g for all j �= 1 and s1 = b | θ = G ) Pr (θ = G ) 
+ Pr (sj = g for all j �= 1 and s1 = b | θ = I ) Pr (θ = I ) 
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Convicting the Innocent (continued) 

Or in other words 

Pr (θ = G | sj = g for all j = 1 and � s1 = b) 

(1 − p) pn−1π 
= 

(1 − p) pn−1π + q (1 − q)n−1 (1 − π) 
1 

1 + q 1−q
n−1

1−π 
1−p p π 

Since p > 1/2 > 1 − q, for n large, this number is close to 1. 
Therefore, for any z < 1, it would be optimal to vote to convict 
even if you have a signal that the defendant is innocent. 
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Convicting the Innocent (continued) 

Of course,the above argument suggests that all individuals vote in 
according to their signals cannot be an equilibrium. 

In general, there exists a mixed strategy equilibrium, in which all 
individuals vote to convict when sj = g , and mix with probability 
α ∈ (0, 1] to convict when sj = b. This mixed equilibrium is found by 
setting 

Pr (θ = G | xj = g for all j = 1 and � s1 = b) = z 

given the mixed strategy profile of others. 

37 



= � �

Networks: Lecture 24 Juries 

Convicting the Innocent (continued) 

Namely, from the same argument, we have 

Pr (θ = G | xj = g for all j = 1 and � s1 = b) 

(1 − p) (p + (1 − p) α)n−1 π 
= 

(1 − p) (p + (1 − p) α)n−1 π + q (1 − q (1 − α))n−1 (1 − π) 
1 

1 + q 1−q(1−α) n−1
1−π


1−p p+(1−p)α π


= z . 

Naturally, the probability that an innocent defendant will be convicted 
can be quite high and is increasing in n. 
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Convicting the Innocent (continued) 

In particular, 
pK (n) − (1 − q)

α = , 
q − (1 − p) K (n)

where � 
π (1 − p) (1 − z) 

�1/(1−n) 

K (n) ≡ . 
qz1 − π 

Clearly, as n →∞, K (n) 1, so that α 1, and the innocent is → →
convicted with a very high probability. 
Interestingly, it can also be shown that the larger is the jury the more 
likely is the innocent to be convicted. 
This model therefore illustrates potential problems that group

decisions can face.

Of course, in this case, directly communicating signals will solve the 
problem. However, in general such communication would also need to 
be strategic (another topic for another course...). 
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