14.382 MIDTERM 2006

Answer as if your try to explain the material to your fellow student.

Consider the model, where $Y=X \beta+\epsilon$, where for each $t, \epsilon_{t} \sim \sigma\left(e_{t}-1\right)$, where e_{t} is standard exponential variable such that $E\left[e_{t}\right]=1$ and $\operatorname{Var}\left[e_{t}\right]=1$. Assume that X are independent of ϵ. Suppose that $\left(x_{t}, \epsilon_{t}\right)$ are i.i.d. across t.

1. (10) Do Gauss-Markov assumptions hold for this model?
2. (10) Consider the least squares estimator $\hat{\beta}$. Compute $E[\hat{\beta} \mid X]$ and $\operatorname{Var}[\hat{\beta} \mid X]$. Is $\hat{\beta}$ normally distributed in finite samples, conditional on X ?
3. (10) Carefully, but briefly, explain the label "BLUE". Is OLS BLUE in this set-up?
4. (10) Consider estimating the following effect

$$
E\left[y_{t} \mid x_{t}=x^{\prime \prime}\right]-E\left[y_{t} \mid x_{t}=x^{\prime}\right]=\left(x^{\prime \prime}-x^{\prime}\right)^{\prime} \beta
$$

Give an economic example where such an effect might be of interest. Is $\left(x^{\prime \prime}-x^{\prime}\right)^{\prime} \hat{\beta}$ BLUE for this effect? Why or why not?
5. (10) Is OLS the BUE (best unbiased estimator) in this model? A brief answer suffices.
6. (15) What is the large sample distribution of $\hat{\beta}$? Make any additional primitive assumptions you might need. [Note: high level assumptions will receive partial credit.]
7. (10) Construct a consistent estimator for the large sample variance of $\hat{\beta}$. Prove its consistency by making any additional assumptions you need.
8. (10) Suppose we want to test the null hypothesis $H_{0}: \beta_{j}=0$ vs $H_{A}: \beta_{j}<0$. Construct a t-statistic for testing this hypothesis. Derive its limit distribution and describe how to select critical value for this test to maintain the level of significance equal to 5%.
9. (15) Suppose the sample size $n=6$. Do you expect the large sample distribution to be a good approximation to the exact distribution of the t-statistic in question 8. Discuss how to get the exact distribution of the t-statistic. How would you generate p-values (or critical values) for checking the hypothesis of question 8 that would be valid even for $n=6$?
10. (Extra Points) Can you come up with better estimators than OLS for this model? Hint: think about the trivial case first, where $X_{t}=1$.

