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Introduction Introduction 

Introduction
 


Ramsey or Cass-Koopmans model: differs from the Solow model only 
because it explicitly models the consumer side and endogenizes 
savings. 

Beyond its use as a basic growth model, also a workhorse for many 
areas of macroeconomics. 
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Introduction Environment 

Preferences, Technology and Demographics I 

Infinite-horizon, continuous time. 
Representative household with instantaneous utility function 

u (c (t)) ,	 (1) 

Assumption	 u (c) is strictly increasing, concave, twice continuously
 

differentiable with derivatives u� and u��, and satisfies the
 

following Inada type assumptions:
 


lim u� (c) = ∞ and lim u� (c) = 0. 
c 0	 c ∞→ →

Suppose representative household represents set of identical
 

households (normalized to 1).
 

Each household has an instantaneous utility function given by (1).
 

L (0) = 1 and
 


L (t) = exp (nt) . (2)
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Introduction Environment 

Preferences, Technology and Demographics II 

All members of the household supply their labor inelastically. 
Objective function of each household at t = 0: � ∞ 

U (0) ≡ exp (− (ρ − n) t) u (c (t)) dt, (3) 
0 

where 
c (t)=consumption per capita at t, 
ρ=subjective discount rate, and effective discount rate is ρ − n. 

Objective function (3) embeds: 
Household is fully altruistic towards all of its future members, and 
makes allocations of consumption (among household members) 
cooperatively. 
Strict concavity of u ( )·

Thus each household member will have an equal consumption 

C (t)
c (t) ≡ 

L (t) 
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Introduction Environment 

Preferences, Technology and Demographics III 

Utility of u (c (t)) per household member at time t, total of

L (t) u (c (t)) = exp (nt) u (c (t)).


With discount at rate of exp (−ρt), obtain (3).


A��������� 4�. 
ρ > n. 

Ensures that in the model without growth, discounted utility is finite.

Will strengthen it in model with growth.


Start model without any technological progress.


Factor and product markets are competitive.


Production possibilities set of the economy is represented by


Y (t) = F [K (t) , L (t)] , 

Standard constant returns to scale and Inada assumptions still hold. 
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Introduction Environment 

Preferences, Technology and Demographics IV 

Per capita production function f ( )
·
Y (t)
 

y (t) ≡ 
L (t) 
K (t) 

= F , 1
L (t) 

≡ f (k (t)) , 

where, as before, 

k (t) ≡ 
K
L (
(

t
t
)

) 
. (4) 

Competitive factor markets then imply: 

R (t) = FK [K (t), L(t)] = f � (k(t)). (5) 

and 
w (t) = FL[K (t), L(t)] = f (k (t)) − k (t) f � (k(t)). (6) 
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Introduction Environment 

Preferences, Technology and Demographics V 

Denote asset holdings of the representative household at time t by 
A (t). Then, 

Ȧ (t) = r (t) A (t) + w (t) L (t) − c (t) L (t) 

r (t) is the risk-free market fiow rate of return on assets, and 
w (t) L (t) is the fiow of labor income earnings of the household. 
Defining per capita assets as 

a (t) ≡ A
L (
(

t
t
)

) 
, 

we obtain: 

ȧ (t) = (r (t) − n) a (t) + w (t) − c (t) . (7) 

Household assets can consist of capital stock, K (t), which they rent 
to firms and government bonds, B (t). 
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Introduction Environment 

Preferences, Technology and Demographics VI
 

With uncertainty, households would have a portfolio choice between 
K (t) and riskless bonds. 

With incomplete markets, bonds allow households to smooth
 

idiosyncratic shocks. But for now no need.
 


Thus, market clearing ⇒ 

a (t) = k (t) . 

No uncertainty depreciation rate of δ implies
 


r (t) = R (t) − δ. (8)
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Introduction Environment 

The Budget Constraint I
 

The differential equation 

ȧ (t) = (r (t) − n) a (t) + w (t) − c (t) 

is a fiow constraint 

Not suffi cient as a proper budget constraint unless we impose a lower 
bound on assets. 

Three options:
 

Lower bound on assets such as a (t) ≥ 0 for all t
 
Natural debt limit (see notes). 
No-Ponzi Game Condition. 

The first two are not always applicable, so the third is most general. 
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Introduction Environment 

The Budget Constraint II 

Write the single budget constraint of the form: � T 
�� T 

� 

c (t) L(t) exp r (s) ds dt + A (T ) (9) 
0 t � T 

�� T 
� �� T 

� 

= w (t) L (t) exp r (s) ds dt + A (0) exp r (s) ds 
0 t 0 

Differentiating this expression with respect to T and dividing L(t) 
gives (7). 

Now imagine that (9) applies to a finite-horizon economy ending at 
date T . 

Flow budget constraint (7) by itself does not guarantee that
 
A (T ) ≥ 0.
 

Thus in finite-horizon we would simply impose (9) as a boundary 
condition. 
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Introduction Environment 

The Budget Constraint III
 

Infinite-horizon case: no-Ponzi-game condition, � � t � 

t
lim 

∞ 
a (t) exp − 

0 
(r (s) − n) ds ≥ 0. (10) 

→

Transversality condition ensures individual would never want to have 
positive wealth asymptotically, so no-Ponzi-game condition can be 
strengthened to (though not necessary in general): � � t � 

lim a (t) exp (r (s) − n) ds = 0. (11)
t→∞ 

− 
0 
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Introduction Environment 

The Budget Constraint IV
 

To understand no-Ponzi-game condition, multiply both sides of (9) by� � T 
� 

exp 0 r (s) ds :− � � t � �� T 
� 

exp − 
0 
r (s) ds 

0 
c (t) L(t)dt + A (T ) � T 

� � t � 

= 
0 
w (t) L (t) exp − 

0 
r (s) ds dt + A (0) , 

Divide everything by L (0) and note that L(t) grows at the rate n, � T 
� � t � 

0 
c (t) exp − 

0 
(r (s) − n) ds dt � � T 

� 

+ exp − 
0 
(r (s) − n) ds a (T ) � T 
� � t � 

= 
0 
w (t) exp − 

0 
(r (s) − n) ds dt + a (0) . 
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Introduction Environment 

The Budget Constraint V
 

Take the limit as T ∞ and use the no-Ponzi-game condition (11) →
to obtain � ∞ 

� � t � 

0 
c (t) exp − 

0 
(r (s) − n) ds dt � ∞ 
� � t � 

= a (0) + 
0 
w (t) exp − 

0 
(r (s) − n) ds dt, 

Thus no-Ponzi-game condition (11) essentially ensures that the
 
individual’s lifetime budget constraint holds in infinite horizon.
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Characterization of Equilibrium Definition of Equilibrium 

Definition of Equilibrium 

Definition	 A competitive equilibrium of the Ramsey economy consists 
of paths [C (t) , K (t) , w (t) , R (t)]t 

∞ 
=0, such that the 

representative household maximizes its utility given initial 
capital stock K (0) and the time path of prices 
[w (t) , R (t)]t 

∞ 
=0, and all markets clear. 

Notice refers to the entire path of quantities and prices, not just
 

steady-state equilibrium.
 


Definition	 A competitive equilibrium of the Ramsey economy consists 
of paths [c (t) , k (t) , w (t) , R (t)]t 

∞ 
=0, such that the 

representative household maximizes (3) subject to (7) and 
(10) given initial capital-labor ratio k (0), factor prices 
[w (t) , R (t)]t 

∞ 
=0 as in (5) and (6), and the rate of return on 

assets r (t) given by (8). 
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Characterization of Equilibrium Household Maximization 

Household Maximization I 

Maximize (3) subject to (7) and (11). 

First ignore (11) and set up the current-value Hamiltonian: 

Ĥ (a, c , µ) = u (c (t)) + µ (t) [w (t) + (r (t) − n) a (t) − c (t)] , 

Maximum Principle “candidate solution” ⇒ 

Ĥ c (a, c , µ) = u� (c (t)) − µ (t) = 0 

Ĥ a (a, c , µ) = µ (t) (r (t) − n) 

= −µ̇ (t) + (ρ − n) µ (t) 

lim [exp (− (ρ − n) t) µ (t) a (t)] = 0. 
t ∞→

and the transition equation (7). 

Notice transversality condition is written in terms of the current-value 
costate variable. 
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Characterization of Equilibrium Household Maximization 

Household Maximization II
 


For any µ (t) > 0, Ĥ (a, c , µ) is a concave function of (a, c) and

strictly concave in c .


The first necessary condition implies µ (t) > 0 for all t. 

Therefore, Suffi cient Conditions imply that the candidate solution is 
an optimum (is it unique?) 

Rearrange the second condition: 

µ̇ (t) 
= − (r (t) − ρ) , (12) 

µ (t) 

First necessary condition implies, 

u� (c (t)) = µ (t) . (13) 
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Characterization of Equilibrium Household Maximization 

Household Maximization III 

Differentiate with respect to time and divide by µ (t),
 


u�� (c (t)) c (t) ċ (t) µ̇ (t)
 

= . 

u� (c (t)) c (t) µ (t) 

Substituting into (12), obtain another form of the consumer Euler 
equation: 

ċ (t) 1 
= (r (t) − ρ) (14)

c (t) εu (c(t)) 

where 
u�� (c (t)) c (t)

εu (c (t)) ≡ − 
u� (c (t))
 

(15) 

is the elasticity of the marginal utility u� (c(t)).
 

Consumption will grow over time when the discount rate is less than 
the rate of return on assets. 
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Characterization of Equilibrium Household Maximization 

Household Maximization IV
 


Speed at which consumption will grow is related to the elasticity of 
marginal utility of consumption, εu (c (t)). 

Even more importantly, εu (c (t)) is the inverse of the intertemporal 
elasticity of substitution: 

regulates willingness to substitute consumption (or any other attribute 
that yields utility) over time. 
Elasticity between dates t and s > t is defined as 

d log (c (s) /c (t)) 
σu (t, s) = − 

d log (u� (c (s)) /u� (c (t))) 
. 

As s t,↓ 

u� (c (t)) 1 
σu (t, s) → σu (t) = − 

u�� (c (t)) c (t)
= 

εu (c (t)) 
. (16) 
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Characterization of Equilibrium Household Maximization 

Household Maximization V
 

Integrating (12), � � t � 

µ (t) = µ (0) exp − 
0 
(r (s) − ρ) ds � � t � 

= u� (c (0)) exp − 
0 
(r (s) − ρ) ds , 

Substituting into the transversality condition, � � � t � 

0 = 
t
lim 

∞ 
exp (− (ρ − n) t) a (t) u� (c (0)) exp − 

0 
(r (s) − ρ) ds 

→ � � � t ��


0 = 
t
lim a (t) exp − 

0 
(r (s) − n) ds .


∞→

Thus the “strong version” of the no-Ponzi condition, (11) has to hold.
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Characterization of Equilibrium Household Maximization 

Household Maximization VI
 


Since a (t) = k (t), transversality condition is also equivalent to � � � t � �


t
lim 

∞ 
exp − 

0 
(r (s) − n) ds k (t) = 0


→ � � t � 
Notice term exp − 0 r (s) ds is a present-value factor: converts a 
unit of income at t to a unit of income at 0. 

When r (s) = r , factor would be exp (−rt). More generally, define an 
average interest rate between dates 0 and t 

1 � t 
r̄ (t) = r (s) ds. (17)

t 0 

Thus conversion factor between dates 0 and t is 

exp (−r̄ (t) t) , 
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Characterization of Equilibrium Household Maximization 

Household Maximization VII 

And the transversality condition
 


lim [exp (− (r̄ (t) − n) t) a (t)] = 0. (18)
 
t ∞→

Recal solution to the differential equation 

ẏ (t) = b (t) y (t) 

is �� t �


y (t) = y (0) exp b (s) ds ,

0 

Integrate (14): 

c (t) = c (0) exp 

�� t r (s) − ρ 
ds 
� 

0 εu (c (s)) 

Once we determine c (0), path of consumption can be exactly solved 
out. 
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Characterization of Equilibrium Household Maximization 

Household Maximization VIII 

Special case where εu (c (s)) is constant, εu (c (s)) = θ: 

c (t) = c (0) exp 
r̄ (t) − ρ 

t ,
θ 

Lifetime budget constraint simplifies to � ∞ 
c (t) exp (− (r̄ (t) − n) t) dt 

0 � ∞ 
=
 a (0) +
 w (t) exp (− (
r̄ (t) − n) t) dt, 

0 

Substituting for c (t), � ∞ 
� � 

(1 − θ) r̄ (t) ρ
 
� � 

c (0)
 = 
0 
exp
 −
 

θ 
− 

θ 
+ n t
 dt (19)
 � � ∞ 

� 

×
 a (0) +
 w (t) exp (− (
r̄ (t) − n) t) dt 
0 
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Characterization of Equilibrium Equilibrium Prices 

Equilibrium Prices 

Equilibrium prices given by (5) and (6). 

Thus market rate of return for consumers, r (t), is given by (8), i.e., 

r (t) = f � (k (t)) − δ. 

Substituting this into the consumer’s problem, we have 

ċ (t) 1 � � 
= f � (k (t)) − δ − ρ (20)

c (t) εu (c (t)) 

Equation (19) similarly generalizes for the case of iso-elastic utility 
function. 
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Optimal Growth Optimal Growth 

Optimal Growth I 

In an economy that admits a representative household, optimal 
growth involves maximization of utility of representative household 
subject to technology and feasibility constraints: � ∞ 

max exp (− (ρ − n) t) u (c (t)) dt, 
[k (t),c (t)] t

∞ 
=0 0 

subject to 
k̇ (t) = f (k (t)) − (n + δ)k (t) − c (t) ,
 

and k (0) > 0.
 

Versions of the First and Second Welfare Theorems for economies 
with a continuum of commodities: solution to this problem should be 
the same as the equilibrium growth problem. 

But straightforward to show the equivalence of the two problems. 
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Optimal Growth Optimal Growth 

Optimal Growth II 

Again set up the current-value Hamiltonian: 

Ĥ (k, c , µ) = u (c (t)) + µ (t) [f (k (t)) − (n + δ)k (t) − c (t)] , 

Candidate solution from the Maximum Principle: 

Ĥ c (k, c , µ) = 0 = u� (c (t)) − µ (t) , 

Ĥ k (k, c , µ) = −µ̇ (t�) + (ρ − n) µ (t) � 
= µ (t) f � (k (t)) − δ − n , 

lim [exp (− (ρ − n) t) µ (t) k (t)] = 0. 
t ∞→

Suffi ciency Theorem unique solution (Ĥ and thus the maximized ⇒
Hamiltonian strictly concave in k). 
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Optimal Growth Optimal Growth 

Optimal Growth III 

Repeating the same steps as before, these imply 

ċ (t) 1 �	 � 
= f � (k (t)) − δ − ρ , 

c (t) εu (c (t)) 

which is identical to (20), and the transversality condition � �	 � t �� 

lim k (t) exp f � (k (s)) − δ − n ds = 0,
∞t→

− 
0 

which is, in turn, identical to (11). 
Thus the competitive equilibrium is a Pareto optimum and that the 
Pareto allocation can be decentralized as a competitive equilibrium. 

Proposition	 In the neoclassical growth model described above, with 
standard assumptions on the production function 
(assumptions 1-4�), the equilibrium is Pareto optimal and 
coincides with the optimal growth path maximizing the 
utility of the representative household. 
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Steady-State Equilibrium Steady State 

Steady-State Equilibrium I 

Steady-state equilibrium is defined as an equilibrium path in which 
capital-labor ratio, consumption and output are constant, thus: 

ċ (t) = 0. 

From (20), as long as f (k∗) > 0, irrespective of the exact utility 
function, we must have a capital-labor ratio k∗ such that 

f � (k∗) = ρ + δ, (21) 

Pins down the steady-state capital-labor ratio only as a function of 
the production function, the discount rate and the depreciation rate. 

Modified golden rule: level of the capital stock that does not 
maximize steady-state consumption, because earlier consumption is 
preferred to later consumption. 
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Steady-State Equilibrium Steady State 

c(t)

kgold0
k(t)

k(0)
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c(0)
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Courtesy of Princeton University Press. Used with permission. 
Figure 8.1 in Acemoglu, Daron. Introduction to Modern Economic Growth. 
Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921.�� 

Figure: Steady state in the baseline neoclassical growth model 
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Steady-State Equilibrium Steady State 

Steady-State Equilibrium II 

Given k∗, steady-state consumption level:
 

c∗
 = f (k∗) − (n + δ)k∗ ,	 (22) 

Given Assumption 4�, a steady state where the capital-labor ratio and 
thus output are constant necessarily satisfies the transversality 
condition. 

Proposition	 In the neoclassical growth model described above, with 
Assumptions 1, 2, assumptions on utility above and 
Assumption 4�, the steady-state equilibrium capital-labor 
ratio, k∗, is uniquely determined by (21) and is independent 
of the utility function. The steady-state consumption per 
capita, c∗, is given by (22). 

Parameterize the production function as follows 

f (k) = Af̃  (k) , 
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Steady-State Equilibrium Steady State 

Steady-State Equilibrium III 

Since f (k) satisfies the regularity conditions imposed above, so does 
f̃  (k). 

Proposition	 Consider the neoclassical growth model described above, 
with Assumptions 1, 2, assumptions on utility above and 
Assumption 4�, and suppose that f (k) = Af̃  (k). Denote 
the steady-state level of the capital-labor ratio by 
k∗ (A, ρ, n, δ) and the steady-state level of consumption per 
capita by c∗ (A, ρ, n, δ) when the underlying parameters are 
A, ρ, n and δ. Then we have 

∂k∗ ( ) ∂k∗ ( ) ∂k∗ ( ) ∂k∗ ( )·
> 0, 

·
< 0, 

·
= 0 and 

·
< 0 

∂A ∂ρ ∂n ∂δ 

∂c∗ ( ) ∂c∗ ( ) ∂c∗ ( ) ∂c∗ ( )·
> 0, 

·
< 0, 

·
< 0 and 

·
< 0. 

∂A ∂ρ ∂n ∂δ 
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Steady-State Equilibrium Steady State 

Steady-State Equilibrium IV 

Instead of the saving rate, it is now the discount factor that affects 
the rate of capital accumulation. 
Loosely, lower discount rate implies greater patience and thus greater 
savings. 
Without technological progress, the steady-state saving rate can be 
computed as 

δk∗ 
s∗ = . (23)

f (k∗) 
Rate of population growth has no impact on the steady state 
capital-labor ratio, which contrasts with the basic Solow model. 

result depends on the way in which intertemporal discounting takes 
place. 

k∗ and thus c∗ do not depend on the instantaneous utility function 
u ( ).·

form of the utility function only affects the transitional dynamics 
not true when there is technological change,. 
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Dynamics Transitional Dynamics 

Transitional Dynamics I 

Equilibrium is determined by two differential equations: 

k̇ (t) = f (k (t)) − (n + δ)k (t) − c (t) (24) 

and 
ċ (t) 1 � � 

= f � (k (t)) − δ − ρ . (25)
c (t) εu (c (t)) 

Moreover, we have an initial condition k (0) > 0, also a boundary 
condition at infinity, � t � � 

t
lim 

∞ 
k (t) exp − 

0 
f � (k (s)) − δ − n ds = 0. 

→
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Dynamics Transitional Dynamics 

Transitional Dynamics II 

Appropriate notion of saddle-path stability: 

consumption level (or equivalently µ) is the control variable, and c (0) 
(or µ (0)) is free: has to adjust to satisfy transversality condition 
since c (0) or µ (0) can jump to any value, need that there exists a 
one-dimensional manifold tending to the steady state (stable arm). 
If there were more than one path equilibrium would be indeterminate. 

Economic forces are such that indeed there will be a one-dimensional 
manifold of stable solutions tending to the unique steady state. 

See Figure. 
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Dynamics Transitional Dynamics 

Courtesy of Princeton University Press. Used with permission.

Figure 8.1 in Acemoglu, Daron. Introduction to Modern Economic Growth.

Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921.




Figure: Transitional dynamics in the baseline neoclassical growth model 
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Dynamics Transitional Dynamics 

Transitional Dynamics: Suffi ciency 

Why is the stable arm unique? 
Three different (complementary) lines of analysis
 


Suffi ciency Theorem
 

Global Stability Analysis
 

Local Stability Analysis
 


Suffi ciency Theorem: solution starting in c (0) and limiting to the 
steady state satisfies the necessary and suffi cient conditions, and thus 
unique solution to household problem and unique equilibrium. 

Proposition	 In the neoclassical growth model described above, with

Assumptions 1, 2, assumptions on utility above and

Assumption 4�, there exists a unique equilibrium path

starting from any k (0) > 0 and converging to the unique

steady-state (k∗, c∗) with k∗ given by (21). Moreover, if

k (0) < k∗, then k (t) k∗ and c (t) c∗, whereas if
↑ ↑
k (0) > k∗, then k (t) k∗ and c (t) c∗ .↓ ↓ 
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Dynamics Transitional Dynamics 

Global Stability Analysis 

Alternative argument: 

if c (0) started below it, say c �� (0), consumption would reach zero, 
thus capital would accumulate continuously until the maximum level of 
capital (reached with zero consumption) k̄ > kgold . This would violate 
the transversality condition. Can be established that transversality 
condition necessary in this case, thus such paths can be ruled out. 
if c (0) started above this stable arm, say at c � (0), the capital stock 
would reach 0 in finite time, while consumption would remain positive. 
But this would violate feasibility (a little care is necessary with this 
argument, since necessary conditions do not apply at the boundary). 
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Dynamics Transitional Dynamics 

Local Stability Analysis I 

Linearize the set of differential equations, and looking at their 
eigenvalues. 

Recall the two differential equations: 

k̇ (t) = f (k (t)) − (n + δ)k (t) − c (t) 

and 
ċ (t) 1 � � 

= f � (k (t)) − δ − ρ . 
c (t) εu (c (t)) 

Linearizing these equations around the steady state (k∗, c∗), we have 
(suppressing time dependence) 

k̇ = constant + 
� 
f � (k∗) − n − δ 

� 
(k − k∗) − c 

ċ = constant + 
c∗

ε

f

u 

�

(

� 

c
(k
∗) 

∗)
(k − k∗) . 

Daron Acemoglu (MIT) Economic Growth Lectures 5 and 6 November 10 and 12, 2009. 37 / 71 



Dynamics Transitional Dynamics 

Local Stability Analysis II 

From (21), f � (k∗) − δ = ρ, so the eigenvalues of this two-equation 
system are given by the values of ξ that solve the following quadratic 
form: � � 

ρ − n − ξ −1 
det c ∗f �� (k ∗ ) = 0. 

εu (c ∗) 
0 − ξ 

Since c∗f �� (k∗) /εu (c∗) < 0, there are two real eigenvalues, one 
negative and one positive. 

Thus local analysis also leads to the same conclusion, but can only 
establish local stability. 
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Technological Change Technological Change 

Technological Change and the Neoclassical Model 

Extend the production function to: 

Y (t) = F [K (t) , A (t) L (t)] , (26) 

where
 

A (t) = exp (gt) A (0) .
 


A consequence of Uzawa Theorem.: (26) imposes purely
 

labor-augmenting– Harrod-neutral– technological change.
 


Continue to adopt all usual assumptions, and Assumption 4� will be 
strengthened further in order to ensure finite discounted utility in the 
presence of sustained economic growth. 
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Technological Change Technological Change 

Technological Change II 

Define 

ŷ (t) ≡ 

= 

Y (t) 
A (t) L (t) 

F 

� 
K (t) 

, 1 
� 

A (t) L (t) 
≡ f (k (t)) , 

where 

k (t) ≡ 
A (
K
t)
(

L
t)
(t) 
. (27) 

Also need to impose a further assumption on preferences in order to 
ensure balanced growth. 
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Technological Change Technological Change 

Technological Change III 

Define balanced growth as a pattern of growth consistent with the 
Kaldor facts of constant capital-output ratio and capital share in 
national income. 

These two observations together also imply that the rental rate of 
return on capital, R (t), has to be constant, which, from (8), implies 
that r (t) has to be constant. 

Again refer to an equilibrium path that satisfies these conditions as a 
balanced growth path (BGP). 

Balanced growth also requires that consumption and output grow at a 
constant rate. Euler equation 

ċ (t) 1 
c (t)

= 
εu (c (t)) 

(r (t) − ρ) . 
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Technological Change Technological Change 

Technological Change IV 

If r (t) r ∗, then ċ (t) /c (t) gc is only possible if
→ →
εu (c (t)) εu , i.e., if the elasticity of marginal utility of
→
consumption is asymptotically constant.
 

Thus balanced growth is only consistent with utility functions that 
have asymptotically constant elasticity of marginal utility of 
consumption. 

Proposition	 Balanced growth in the neoclassical model requires that 
asymptotically (as t ∞) all technological change is purely →
labor augmenting and the elasticity of intertemporal 
substitution, εu (c (t)), tends to a constant εu . 
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Technological Change Technological Change 

Example: CRRA Utility I 

Recall the Arrow-Pratt coeffi cient of relative risk aversion for a 
twice-continuously differentiable concave utility function U (c) is 

U �� (c) c 
.R = − 

U � (c) 

Constant relative risk aversion (CRRA) utility function satisfies the 
property that R is constant. 

Integrating both sides of the previous equation, setting R to a 
constant, implies that the family of CRRA utility functions is given by 

U (c) = 
c1
1
−
−
θ −

θ 
1 if θ �= 1 and θ ≥ 0 

,
ln c if θ = 1 

with the coeffi cient of relative risk aversion given by θ.
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Technological Change Technological Change 

Example: CRRA Utility II 

With time separable utility functions, the inverse of the elasticity of 
intertemporal substitution (defined in equation (16)) and the 
coeffi cient of relative risk aversion are identical. 

Thus the family of CRRA utility functions are also those with
 

constant elasticity of intertemporal substitution.
 


Link this utility function to the Gorman preferences: consider a 
slightly different problem in which an individual has preferences 
defined over the consumption of N commodities {c1, ..., cN } given by 

U ({c1, ..., cN }) =	 ∑N
j =1 

c 
1
j 
1

−
−

θ

θ 

if θ �= 1 and θ ≥ 0 . (28)
∑N
j =1 ln cj if θ = 1 
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Technological Change Technological Change 

Example: CRRA Utility III 

Suppose this individual faces a price vector p = (p1, ..., pN ) and has 
income y , so that his budget constraint is 

N 

∑ pj cj ≤ y . (29) 
j =1 

Maximizing utility subject to this budget constraint leads to the 
indirect utility function 

σ−1 
y σ 

v (p,y ) = � �1/σ 
∑N
j =1 pj 

1−σ 

A monotonic transformation (raise it to the power σ/ (σ − 1)) leads 
to Gorman class: CRRA utility functions are within the Gorman class 
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Technological Change Technological Change 

Example: CRRA Utility IV 

If all individuals have CRRA utility functions, then we can aggregate 
their preferences and represent them as if it belonged to a single 
individual. 

Now consider a dynamic version of these preferences (defined over 
infinite horizon): 

∑∞ 
=0 β

t c (t)
1−θ −1 if θ = 1 and θ ≥ 0U = t . 

∑∞ 
t=0 β

t ln
1
c
−
(
θ 
t) 

�
if θ = 1 

The important feature here is not that the coeffi cient of relative risk 
aversion constant, but that the intertemporal elasticity of substitution 
is constant. 
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Technological Change Technological Change 

Technological Change V 

Given the restriction that balanced growth is only possible with a 
constant elasticity of intertemporal substitution, start with 

u (c (t)) = 
c (t 
1
)1

−
−

θ

θ −1 if θ �= 1 and θ ≥ 0 ,
ln c(t) if θ = 1 

Elasticity of marginal utility of consumption, εu , is given by θ. 

When θ = 0, these represent linear preferences, when θ = 1, we have 
log preferences, and as θ ∞, infinitely risk-averse, and infinitely →
unwilling to substitute consumption over time. 

Assume that the economy admits a representative household with 
CRRA preferences � 

0 

∞ 
exp (−(ρ − n)t) 

c̃ (t
1 
)1

−

−θ

θ 
− 1

dt, (30) 
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Technological Change Technological Change 

Technological Change VI 

c̃ (t) ≡ C (t) /L (t) is per capita consumption. 

Refer to this model, with labor-augmenting technological change and 
CRRA preference as given by (30) as the canonical model 

Euler equation takes the simpler form: 

· 
c̃ (t) 1 
c̃ (t)

= 
θ 
(r (t) − ρ) . (31) 

Steady-state equilibrium first: since with technological progress there 
will be growth in per capita income, c̃ (t) will grow. 
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Technological Change Technological Change 

Technological Change VII 

Instead define 

C (t)
c (t) ≡ 

A (t) L (t) 
c̃ (t) 

.≡ 
A (t) 

This normalized consumption level will remain constant along the 
BGP: 

· 
ċ (t) c̃ (t) 
c (t) 

≡ 
c̃ (t) 

− g 

1 
= (r (t) − ρ − θg ) . 

θ 
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Technological Change Technological Change 

Technological Change VIII 

For the accumulation of capital stock: 

k̇ (t) = f (k (t)) − c (t) − (n + g + δ) k (t) , 

where k (t) ≡ K (t) /A (t) L (t). 

Transversality condition, in turn, can be expressed as � t � � 
t
lim 

∞ 
k (t) exp − 

0 
f � (k (s)) − g − δ − n ds = 0. (32) 

→

In addition, equilibrium r (t) is still given by (8), so
 


r (t) = f � (k (t)) − δ
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Technological Change Technological Change 

Technological Change IX 

Since in steady state c (t) must remain constant:
 


r (t) = ρ + θg
 


or 
f � (k∗) = ρ + δ + θg , (33) 

Pins down the steady-state value of the normalized capital ratio k∗ 

uniquely. 

Normalized consumption level is then given by 

c∗ = f (k∗) − (n + g + δ) k∗ , (34) 

Per capita consumption grows at the rate g . 
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Technological Change Technological Change 

Technological Change X 

Because there is growth, to make sure that the transversality 
condition is in fact satisfied substitute (33) into (32): � � � t ��


t
lim 

∞ 
k (t) exp − 

0 
[ρ − (1 − θ) g − n] ds = 0,


→

Can only hold if ρ − (1 − θ) g − n > 0, or alternatively : 

A��������� 4: 
ρ − n > (1 − θ) g . 

Remarks: 

Strengthens Assumption 4� when θ < 1.

Alternatively, recall in steady state r = ρ + θg and the growth rate of

output is g + n.

Therefore, equivalent to requiring that r > g + n.
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Technological Change Technological Change 

Technological Change XI 

Proposition	 Consider the neoclassical growth model with labor 
augmenting technological progress at the rate g and 
preferences given by (30). Suppose that Assumptions 1, 2, 
assumptions on utility above hold and ρ − n > (1 − θ) g . 
Then there exists a unique balanced growth path with a 
normalized capital to effective labor ratio of k∗, given by 
(33), and output per capita and consumption per capita 
grow at the rate g . 

Steady-state capital-labor ratio no longer independent of preferences, 
depends on θ. 

Positive growth in output per capita, and thus in consumption per 
capita. 
With upward-sloping consumption profile, willingness to substitute 
consumption today for consumption tomorrow determines 
accumulation and thus equilibrium effective capital-labor ratio. 
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Courtesy of Princeton University Press. Used with permission. 


Figure 8.1 in Acemoglu, Daron. Introduction to Modern Economic Growth.

Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921. 


Figure: Transitional dynamics in the neoclassical growth model with technological 
change. 
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Technological Change Technological Change 

Technological Change XII 

Steady-state effective capital-labor ratio, k∗, is determined 
endogenously, but steady-state growth rate of the economy is given 
exogenously and equal to g . 

Proposition	 Consider the neoclassical growth model with labor

augmenting technological progress at the rate g and

preferences given by (30). Suppose that Assumptions 1, 2,

assumptions on utility above hold and ρ − n > (1 − θ) g .

Then there exists a unique equilibrium path of normalized

capital and consumption, (k (t) , c (t)) converging to the

unique steady-state (k∗, c∗) with k∗ given by (33).

Moreover, if k (0) < k∗, then k (t) k∗ and c (t) c∗,
↑ ↑
whereas if k (0) > k∗, then c (t) k∗ and c (t) c∗.↓ ↓ 
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Technological Change Technological Change 

Example: CRRA and Cobb-Douglas 

Production function is given by F (K , AL) = K α (AL)1−α, so that 

f (k) = kα , 

Thus r = αkα−1 − δ. 

Suppressing time dependence, Euler equation:


ċ 1 � �

= αkα−1 − δ − ρ − θg , 

c θ 

Accumulation equation: 

k̇ c 
k 
= kα−1 − δ − g − n − 

k 
. 

Define z ≡ c/k and x ≡ kα−1, which implies that
 

ẋ/x = (α − 1) k̇/k.
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Technological Change Technological Change 

Example II 

Therefore, 
ẋ 
= − (1 − α) (x − δ − g − n − z) (35)

x 

ż ċ k̇ 

z 
= 
c 
− 
k 
, 

Thus 

ż	 1 
= (αx − δ − ρ − θg ) − x + δ + g + n + z 

z	 	 θ 
1 ρ 

= ((α − θ)x − (1 − θ)δ + θn) − + z . (36)
θ	 θ 

Differential equations (35) and (36) together with the initial condition 
x (0) and the transversality condition completely determine the 
dynamics of the system. 

Daron Acemoglu (MIT) Economic Growth Lectures 5 and 6 November 10 and 12, 2009. 57 / 71 



Technological Change Comparative Dynamics 

Comparative Dynamics I 

Comparative statics: changes in steady state in response to changes 
in parameters. 

Comparative dynamics look at how the entire equilibrium path of

variables changes in response to a change in policy or parameters.


Look at the effect of a change in tax on capital (or discount rate ρ) 

Consider the neoclassical growth in steady state (k∗, c∗). 

Tax declines to τ� < τ. 

From Propositions above, after the change there exists a unique

steady state equilibrium that is saddle path stable.
 


Let this steady state be denoted by (k∗∗, c∗∗).
 

Since τ� < τ, k∗∗ > k∗ while the equilibrium growth rate will remain 
unchanged. 
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Technological Change Comparative Dynamics 

Comparative Dynamics II 

Figure: drawn assuming change is unanticipated and occurs at some 
date T . 

At T , curve corresponding to ċ/c = 0 shifts to the right and laws of 
motion represented by the phase diagram change. 

Following the decline c∗ is above the stable arm of the new dynamical 
system: consumption must drop immediately 

Then consumption slowly increases along the stable arm 

Overall level of normalized consumption will necessarily increase, since 
the intersection between the curve for ċ/c = 0 and for k̇/k = 0 will 
necessarily be to the left side of kgold . 
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Technological Change Comparative Dynamics 
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k
Courtesy of Princeton University Press. Used with permission. 
Figure 8.2 in Acemoglu, Daron. Introduction to Modern Economic Growth.

Princeton, NJ: Princeton University Press, 2009. ISBN: 9780691132921.


Figure: The dynamic response of capital and consumption to a decline in capital 
taxation from τ to τ � < τ. 

Daron Acemoglu (MIT) Economic Growth Lectures 5 and 6 November 10 and 12, 2009. 60 / 71


http://press.princeton.edu/titles/8764.html


Policy and Quantitative Analysis The Role of Policy 

The Role of Policy I 

Growth of per capita consumption and output per worker (per capita) 
are determined exogenously. 
But level of income, depends on 1/θ, ρ, δ, n, and naturally the form 
of f ( ).·
Proximate causes of differences in income per capita: here explain 
those differences only in terms of preference and technology 
parameters. 
Link between proximate and potential fundamental causes: 

e.g. intertemporal elasticity of substitution and the discount rate can 
be as related to cultural or geographic factors. 

But an explanation for cross-country and over-time differences in 
economic growth based on differences or changes in preferences is 
unlikely to be satisfactory. 
More appealing: link incentives to accumulate physical capital (and 
human capital and technology) to the institutional environment. 
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Policy and Quantitative Analysis The Role of Policy 

The Role of Policy II 

Simple way: through differences in policies. 

Introduce linear tax policy: returns on capital net of depreciation are 
taxed at the rate τ and the proceeds of this are redistributed back to 
the consumers. 

Capital accumulation equation remains as above: 

k̇ (t) = f (k (t)) − c (t) − (n + g + δ) k (t) , 

But interest rate faced by households changes to: 

r (t) = (1 − τ) f � (k (t)) − δ , 

Daron Acemoglu (MIT) Economic Growth Lectures 5 and 6 November 10 and 12, 2009. 62 / 71 



Policy and Quantitative Analysis The Role of Policy 

The Role of Policy III 

Growth rate of normalized consumption is then obtained from the 
consumer Euler equation, (31): 

ċ (t) 1 
c (t)

= 
θ 
(r (t) − ρ − θg ) . 

1 � � � � 
= (1 − τ) f � (k (t)) − δ − ρ − θg . 

θ 

Identical argument to that before implies 

f � (k∗) = δ + 
ρ + θg 

. (37)
1 − τ 

Higher τ, since f � ( ) is decreasing, reduces k∗.·
Higher taxes on capital have the effect of depressing capital

accumulation and reducing income per capita.

But have not so far offered a reason why some countries may tax 
capital at a higher rate than others. 
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A Quantitative Evaluation A Quantitative Evaluation 

A Quantitative Evaluation I
 


Consider a world consisting of a collection J of closed neoclassical 
economies (with the caveats of ignoring technological, trade and 
financial linkages across countries 
Each country j ∈ J admits a representative household with identical 
preferences, � 

0 

∞ 
exp (−ρt) 

Cj 
1

1 

−

− 

θ − 

θ 

1 
dt. (38) 

There is no population growth, so cj is both total or per capita
 

consumption.
 

Equation (38) imposes that all countries have the same discount rate 
ρ. 
All countries also have access to the same production technology
 

given by the Cobb-Douglas production function
 


Yj = Kj 
1−α (AHj )

α , (39) 

Hj is the exogenously given stock of effective labor (human capital). 
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A Quantitative Evaluation A Quantitative Evaluation 

A Quantitative Evaluation II 

The accumulation equation is 

K̇j = Ij − δKj . 

The only difference across countries is in the budget constraint for the 
representative household, 

(1 + τj ) Ij + Cj ≤ Yj , (40) 

τj is the tax on investment: varies across countries because of policies 
or differences in institutions/property rights enforcement. 

1 + τj is also the relative price of investment goods (relative to 
consumption goods): one unit of consumption goods can only be 
transformed into 1/ (1 + τj ) units of investment goods. 

The right-hand side variable of (40) is still Yj : assumes that τj Ij is 
wasted, rather than simply redistributed to some other agents. 
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A Quantitative Evaluation A Quantitative Evaluation 

A Quantitative Evaluation III
 


Without major consequence since CRRA preferences (38) can be 
exactly aggregated across individuals. 

Competitive equilibrium: solution to maximization of (38) subject to 
(40) and the capital accumulation equation. 

Euler equation of the representative household 

Ċ j 1 
� 
(1 − α) 

� 
AHj 

�α �


Cj 
= 

θ (1 + τj ) Kj 
− δ − ρ .


Steady state: because A is assumed to be constant, the steady state 
corresponds to Ċ j /Cj = 0. Thus, 

(1 − α)1/α AHjKj = 
[(1 + τj ) (ρ + δ)] 1/α 
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A Quantitative Evaluation A Quantitative Evaluation 

A Quantitative Evaluation IV
 

Thus countries with higher taxes on investment will have a lower 
capital stock, lower capital per worker, and lower capital output ratio 
(using (39) the capital output ratio is simply K /Y = (K /AH)α) in 
steady state. 
Substituting into (39), and comparing two countries with different 
taxes (but the same human capital): � � 1−α 

αY (τ) 1 + τ� 
= (41)

Y (τ�) 1 + τ 

So countries that tax investment at a higher rate will be poorer. 
Advantage relative to Solow growth model: extent to which different 
types of distortions will affect income and capital accumulation is 
determined endogenously. 
A plausible value for α is 2/3, since this is the share of labor income 
in national product. 
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A Quantitative Evaluation A Quantitative Evaluation 

A Quantitative Evaluation V
 

For differences in τ’s across countries there is no obvious answer: 

popular approach: obtain estimates of τ from the relative price of 
investment goods (as compared to consumption goods) 
data from the Penn World tables suggest there is a large amount of 
variation in the relative price of investment goods. 

E.g., countries with the highest relative price of investment goods 
have relative prices almost eight times as high as countries with the 
lowest relative price. 

Using α = 2/3, equation (41) implies: 

Y
Y 
(

(

τ

τ
�
)

) 
≈ 81/2 ≈ 3. 

Thus, even very large differences in taxes or distortions are unlikely to 
account for the large differences in income per capita that we observe. 
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A Quantitative Evaluation A Quantitative Evaluation 

A Quantitative Evaluation VI 

Parallels discussion of the Mankiw-Romer-Weil approach: 

differences in income per capita unlikely to be accounted for by 
differences in capital per worker alone. 
need sizable differences in the effi ciency with which these factors are 
used, absent in this model. 

But many economists have tried (and still try) to use versions of the 
neoclassical model to go further. 

Motivation is simple: if instead of using α = 2/3, we take α = 1/3 

Y
Y 
(

(

τ

τ
�
)

) 
≈ 82 ≈ 64. 

Thus if there is a way of increasing the responsiveness of capital or 
other factors to distortions, predicted differences across countries can 
be made much larger. 
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A Quantitative Evaluation A Quantitative Evaluation 

A Quantitative Evaluation VII
 


To have a model in which α = 1/3, must have additional 
accumulated factors, while still keeping the share of labor income in 
national product roughly around 2/3. 

E.g., include human capital, but human capital differences appear to 
be insuffi cient to explain much of the income per capita differences 
across countries. 

Or introduce other types of capital or perhaps technology that
 

responds to distortions in the same way as capital.
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Conclusions 

Conclusions
 


Major contribution: open the black box of capital accumulation by 
specifying the preferences of consumers. 

Also by specifying individual preferences we can explicitly compare
 
equilibrium and optimal growth.
 

Paves the way for further analysis of capital accumulation, human
 
capital and endogenous technological progress.
 

Did our study of the neoclassical growth model generate new insights 
about the sources of cross-country income differences and economic 
growth relative to the Solow growth model? Largely no. 

This model, by itself, does not enable us to answer questions about 
the fundamental causes of economic growth. 

But it clarifies the nature of the economic decisions so that we are in 
a better position to ask such questions. 
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