MITOCW | Lecture 9A

PROFESSOR:

[MUSIC PLAYING - "JESU, JOY OF MAN'S DESIRING" BY JOHANN SEBASTIAN BACH]

Well, up 'til now, | suppose, we've been learning about a lot of techniques for organizing big
programs, symbolic manipulation a bit, some of the technology that you use for establishing
languages, one in terms of another, which is used for organizing very large programs. In fact,
the nicest programs | know look more like a pile of languages than like a decomposition of a
problem into parts. Well, | suppose at this point, there are still, however, a few mysteries about

how this sort of stuff works.

And so what we'd like to do now is diverge from the plan of telling you how to organize big
programs, and rather tell you something about the mechanisms by which these things can be
made to work. The main reason for this is demystification, if you will, that we have a lot of
mysteries left, like exactly how it is the case that a program is controlled, how a computer
knows what the next thing to do is, or something like that. And what I'd like to do now is make
that clear to you, that even if you've never played with a physical computer before, the

mechanism is really very simple, and that you can understand it completely with no trouble.

So I'd like to start by imagining that we-- well, the way we're going to do this, by the way, is
we're going to take some very simple Lisp programs, very simple Lisp programs, and
transform them into hardware. I'm not going to worry about some intermediate step of going
through some existing computer machine language and then showing you how that computer
works, because that's not as illuminating. So what I'm really going to show you is how a piece
of machinery can be built to do a job that you have written down as a program. That program

is, in fact, a description of a machine.

We're going to start with a very simple program, proceed to show you some simple
mechanisms, proceed to a few more complicated programs, and then later show you a not
very complicated program, how the evaluator transforms into a piece of hardware. And of
course at that point, you have made the universal transition and can execute any program

imaginable with a piece of well-defined hardware.

Well, let's start up now, give you a real concrete feeling for this sort of thing. Let's start with a
very simple program. Here's Euclid's algorithm. It's actually a little bit more modern than

Euclid's algorithm. Euclid's algorithm for computing the greatest common divisor of two

numbers was invented 350 BC, | think. It's the oldest known algorithm.

But here we're going to talk about GCD of A and B, the Greatest Common Divisor or two
numbers, A and B. And the algorithm is extremely simple. If B is 0, then the result is going to

be A. Otherwise, the result is the GCD of B and the remainder when A is divided by B.

So this we have here is a very simple iterative process. This a simple recursive procedure,
recursively defined procedure, recursive definition, which yields an iterative process. And the
way it works is that every step, it determines whether B was zero. And if B is 0, we got the
answer in A. Otherwise, we make another step where A is the old B, and B is the remainder of

the old A divided by the old B. Very simple.

Now this, I've already told you some of the mechanism by just saying it that way. | set it in
time. | said there are certain steps, and that, in fact, one of the things you can see here is that
one of the reasons why this is iterative is nothing is needed of the last step to get the answer.
All of the information that's needed to run this algorithm is in A and B. It has two well-defined

state variables.

So I'm going to define a machine for you that can compute you GCDs. Now let's see. Every
computer that's ever been made that's a single-process computer, as opposed to a
multiprocessor of some sort, is made according to the same plan. The plan is the computer

has two parts, a part called the datapaths, and a part called the controller.

The datapaths correspond to a calculator that you might have. It contains certain registers that
remember things, and you've all used calculators. It has some buttons on it and some lights.
And so by pushing the various buttons, you can cause operations to happen inside there

among the registers, and some of the results to be displayed.

That's completely mechanical. You could imagine that box has no intelligence in it. Now it
might be very impressive that it can produce the sine of a number, but that at least is
apparently possibly mechanical. At least, | could open that up in the same way I'm about to

open GCD.

So this may have a whole computer inside of it, but that's not interesting. Addition is certainly

simple. That can be done without any further mechanism.

Now also, if we were to look at the other half, the controller, that's a part that's dumb, too. It

pushes the buttons. It pushes them according to the sequence, which is written down on a

piece of paper, and observes the lights.

And every so often, it comes to a place in a sequence that says, if light A is on, do this
sequence. Otherwise, do that sequence. And thereby, there's no complexity there either. Well,

let's just draw that and see what we feel about that.

So for computing GCDs, what | want you to think about is that there are these registers. A
register is a place where | store a number, in this case. And this one's called a. And then

there's another one for storing b.

Now we have to see what things we can do with these registers, and they're not entirely
obvious what you can do with them. Well, we have to see what things we need to do with

them. We're looking at the problem we're trying to solve.

One of the important things for designing a computer, which | think most designers don't do, is
you study the problem you want to solve and then use what you learn from studying the
problem you want to solve to put in the mechanisms needed to solve it in the computer you're
building, no more no less. Now it may be that the problem you're trying to solve is everybody's
problem, in which case you have to build in a universal interpreter of some language. But you
shouldn't put any more in than required to build the universal interpreter of some language.

We'll worry about that in a second.

OK, going back to here, let's see. What do we have to be able to do? Well, somehow, we have
to be able to get B into A. We have to be able to get the old value of B into the value of A. So
we have to have some path by which stuff can flow, whatever this information is, from b to a.
I'm going to draw that with by an arrow saying that it is possible to move the contents of b into
a, replacing the value of a. And there's a little button here which you push which allows that to

happen. That's what the little x is here.

Now it's also the case that | have to be able to compute the remainder of a and b. Now that
may be a complicated mess. On the other hand, I'm going to make it a small box. If we have

to, we may open up that box and look inside and see what it is.

So here, I'm going to have a little box, which I'm going to draw this way, which we'll call the
remainder. And it's going to take in a. That's going to take in b. And it's going to put out

something, the remainder of a divided by b.

Another thing we have to see here is that we have to be able to test whether b is equal to 0.
Well, that means somebody's got to be looking at-- a thing that's looking at the value of b. |

have a light bulb here which lights up if b equals 0. That's its job.

And finally, | suppose, because of the fact that we want the new value of a to be the old value
of b, and simultaneously the new value of b to be something I've done with a, and if | plan to
make my machine such that everything happens one at a time, one motion at a time, and |
can't put two numbers in a register, then | have to have another place to put one while I'm
interchanging. OK? | can't interchange the two things in my hands, unless | either put two in
one hand and then pull it back the other way, or unless | put one down, pick it up, and put the
other one, like that, unless I'm a juggler, which I'm not, as you can see, in which case | have a
possibility of timing errors. In fact, much of the type of computer design people do involves

timing errors, of some potential timing errors, which | don't much like.

So for that reason, | have to have a place to put the second one of them down. So | have a
place called t, which is a register just for temporary, t, with a button on it. And then I'll take the
result of that, since | have to take that and put into b, over here, we'll take the result of that

and go like this, and a button here. So that's the datapaths of a GCD machine.

Now what's the controller? Controller's a very simple thing, too. The machine has a state.

The way | like to visualize that is that I've got a maze. And the maze has a bunch of places
connected by directed arrows. And what | have is a marble, which represents the state of the
controller. The marble rolls around in the maze. Of course, this analogy breaks down for
energy reasons. | sometimes have to pump the marble up to the top, because it's going to
otherwise be a perpetual motion machine. But not worrying about that, this is not a physical

analogy.

This marble rolls around. And every time it rolls around certain bumpers, like in a pinball
machine, it pushes one of these buttons. And every so often, it comes to a place, which is a
division, where it has to make a choice. And there's a flap, which is controlled by this. So that's

a really mechanical way of thinking about it.

Of course, controllers these days, are not built that way in real computers. They're built with a
little bit of ROM and a state register. But there was a time, like the DEC PDP-6, where that's
how you built the controller of a machine. There was a bit that ran around the delay line, and it

triggered things as it went by. And it would come back to the beginning and get fed round

again.

And of course, there were all sorts of great bugs you could have like two bits going around,

two marbles. And then the machine has lost its marbles. That happens, too. Oh, well.

So anyway, for this machine, what | have to do is the following. I'm going to start my maze
here. And the first thing I've got to do, in a notation which many of you are familiar with, is b
equal to zero, a test. And there's a possibility, either yes, in which case I'm done. Otherwise, if

no, then I'm going have to roll over some bumpers.

I'm going to do it in the following order. | want to do this interchange game. Now first, since |
need both a and b, but then the first-- and this is not necessary-- | want to collect this. This is
the thing that's going to go into b. So I'm going to say, take this, which depends upon both a
and b, and put the remainder into here. So I'm going to push this button first. Then, I'm going
to transfer b to a, push that button, and then | transfer the temporary into b, push that button.

So a very sequential machine, it's very inefficient. But that's fine right now.

We're going to name the buttons, t gets remainder. a gets b. And b gets t. And then I'm going

to go around here and it's to go back to start.

And if you look, what are we seeing here? We're seeing the various-- what | really have is
some sort of mechanical connection, where t gets r controls this thing. And | have here that a

gets b controls this fellow over here, and this fellow over here.

Boy, that's absolutely pessimal, the inverse of optimal. Every line heads across every other

line the way | drew it. | suppose this goes here, b gets t.

Now I'd like to run this machine. But before | run the machine, | want to write down a
description of this controller, just so you can see that these things, of course, as usual, can be
written down in some nice language, so that we don't have to always draw these diagrams.
One of the problems with diagrams is that they take up a lot of space. And for a machine this
small, it takes two blackboards. For a machine that's the evaluator machine, | have trouble
putting it into this room, even though it isn't very big. So I'm going to make a little language for

this that's just a description of that, saying define a machine we'll call GCD.

Of course, once we have something like this, we have a simulator for it. And the reason why

we want to build a language in this form, is because all of a sudden we can manipulate these

expressions that I'm writing down. And then of course | can write things that can algebraically
manipulate these things, simulate them, all that sort of things that | might want to do, perhaps
transform them as a layout, who knows. Once | have a nice representation of registers, it has

certain registers, which we can call A, B, and T. And there's a controller.

Actually, a better language, which would be more explicit, would be one which named every
button also and said what it did. Like, this button causes the contents of T to go to the contents
of B. Well | don't want to do that, because it's actually harder to read to do that, and it takes up

more space. So I'm going to have that in the instructions written in the controller.

It's going to be implicit what the operations are. They can be deduced by reading these and
collecting together all the different things that can be done. Well, let's just look at what these
things are. There's a little loop that we go around which says branch, this is the representation
of the little flap that decides which way you go here, if 0 fetch of B, the contents of B, and if the

contents of B is 0, then go to a place called done.

Now, one thing you're seeing here, this looks very much like a traditional computer language.
And what you're seeing here is things like labels that represent places in a sequence written
down as a sequence. The reason why they're needed is because over here, I've written

something with loops.

But if I'm writing English text, or something like that, it's hard to refer to a place. | don't have
arrows. Arrows are represented by giving names to the places where the arrows terminate,
and then referring to them by those names. Now this is just an encoding. There's nothing

magical about things like that.

Next thing we're going to do is we're going to say, how do we do T gets R? Oh, that's easy
enough, assign. We assign to T the remainder. Assign is the name of the button. That's the
button-pusher. Assign to T the remainder, and here's the representation of the operation,

when we divide the fetch of A by the fetch of B.

And we're also going to assign to A the fetch of B, assign to B the result of getting the contents
of T. And now | have to refer to the beginning here. | see, why don't | call that loop like | have
here? So that's that reference to that arrow. And when we're done, we're done. We go to here,

which is the end of the thing.

So here's just a written representation of this fragment of machinery that we've drawn here.

Now the next thing I'd like to do is run this. | want us to feel it running. Never done this before,

you got to do it once.

So let's take a particular problem. Suppose we want to compute the GCD of a equals 30 and b
equals 42. | have no idea what that is right now. But a 30 and b is 42. So that's how | start this

thing up.

Well, what's the first thing | do? | say is B equal to 0, no. Then assign to T the remainder of the
fetch of A and the fetch of B. Well the remainder of 30 when divided by 42 is itself 30. Push
that button.

Now the marble has rolled to here. A gets B. That pushes this button. So 42 moves into here.

B gets C. Push that button. The 30 goes here. Let met just interchange them.

Now let's see, go back to the beginning. B 0, no. T gets the remainder. | suppose the

remainder when dividing 42 by 30 is 12. | push that one.

Next thing | do is allow the 30 to go to here, push this one, allow the 12 to go to here. Go
around this thing. Is that done? No. How about-- so now | have to find out the remainder of 30
divided by 12. And | believe that's 6. So 6 goes here on this button push. Then the next thing |

push is this one, which the 12 goes into here.

Then | push this button. The 6 gets into here. Is 6 equal to 0? No. OK.

So then at that point, the next thing to do is divide it. Ooh, this has got a remainder of 0. Looks

like we're almost done.

Move the 6 over here next. 0 over here. Is the answer 0? Yes. B is 0, therefore the answer is

in A.

The answer is 6. And indeed that's right, because if we look at the original problem, what we
have is 30 is 2 times 3 times 5, and 42 is 2 times 3 times 7. So the greatest common divisor is

2 times 3, which is 6.

Now normally, we write one other little line here, just to make it a little bit clearer, which is that
we leave in a connection saying that this light is the guy that that flap looks at. Of course, any
real machine has a lot more complicated things in it than what I've just shown you. Let's look

for a second at the first still store.

Wow. Well you see, for example, one thing we might want to do is worry about the operations
that are of IO form. And we may have to collect something from the outside. So a state
machine that we might have, the controller may have to, for example, get a value from
something and put register a to load it up. | have to master load up register b with another

value.

And then later, when I'm done, | might want to print the answer out. And of course, that might
be either simple or complicated. I'm writing, assuming print is very simple, and read is very
simple. But in fact, in the real world, those are very complicated operations, usually much,
much larger and more complicated than the thing you're doing as your problem you're trying

to solve.

On the other hand, | can remember a time when, | remember using IBM 7090 computer of
sorts, where things like read and write of a single object, a single number, a number, is a

primitive operation of the 10 controller. OK?

And so we have that kind of thing in there. And in such a machine, well, what are we really
doing? We're just saying that there's a source over here called "read," which is an operation
which always has a value. We have to think about this as always having a value which can be
gated into either register a or b. And print is some sort of thing which when you gate it
appropriately, when you push the button on it, will cause a print of the value that's currently in

register a. Nothing very exciting.

So that's one sort of thing you might want to have. But these are also other things that are a

little bit worrisome. Like I've used here some complicated mechanisms.

What you see here is remainder. What is that? That may not be so obvious how to compute. It
may be something which when you open it up, you get a whole machine. OK? In fact, that's

true.

For example, if | write down the program for remainder, the simplest program for it is by
repeated subtraction. Because of course, division can be done by repeated subtraction of
numbers, of integers. So the remainder of N divided by D is nothing more than if N is less than
D, then the result is N. Otherwise, it's the remainder when we subtract D from N with respect

to D, when divided by D. Gee, this looks just like the GCD program.

Of course, it's not a very nice way to do remainders. You'd really want to use something like

PROFESSOR:

binary notation and shift and things like that in a practical computer. But the point of that is that

if 1 open this thing up, | might find inside of it a computer.

Oh, we know how to do that. We just made one. And it could be another thing just like this.

On the other hand, we might want to make a more efficient or better-structured machine, or
maybe make use of some of the registers more than once, or some horrible mess like that that
hardware designers like to do, and for very good reasons. So for example, here's a machine
that you see, which you're not supposed to be able to read. It's a little bit complicated. But
what it is is the integration of the remainder into the GCD machine. And it takes, in fact, no

more registers. There are three registers in the datapaths. OK?

But now there's a subtractor. There are two things that are tested. Is b equal to 0, or is t less

than b?

And then the controller, which you see over here, is not much more complicated. But it has two
loops in it, one of which is the main one for doing the GCD, and one of which is the subtraction
loop for doing the remainder sub-operation. And there are ways, of course, of, if you think
about it, taking the remainder program. If | take remainder, as you see over there, as a
lambda expression, substitute it in for remainder over here in the GCD program, then do some
simplification by substituting a and b for remainder in there, then | can unwind this loop. And |
can get this piece of machinery by basically, a little bit of algebraic simplification on the lambda

expressions.

So | suppose you've seen your first very simple machines now. Are there any questions?

Good. This looks easy, doesn't it? Thank you. | suppose, take a break.

[MUSIC PLAYING - "JESU, JOY OF MAN'S DESIRING" BY JOHANN SEBASTIAN BACH]

Well, let's see. Now you know how to make an iterative procedure, or a procedure that yields
an iterative process, turn into a machine. | suppose the next thing we want to do is worry

about things that reveal recursive processes. So let's play with a simple factorial procedure.

We define factorial of N to be if nis 1, the result is 1, using 1 right now to decrease the amount
of work | have to do to simulate it, else it's times N factorial N minus 1. And what's different
with this program, as you know, is that after I've computed factorial of N minus 1 here, | have

to do something to the result. | have to multiply it by N.

So the only way | can visualize what this machine is doing, because of the fact-- think of it this
way, that | have a machine out here which somehow needs a factorial machine in order to
compute its answer. But this machine, the outer machine, has to exist before and after the
factorial machine, which is inside. Whereas in the iterative case, the outer machine doesn't
need to exist after the inner machine is running, because you never need to go back to the

outer machine to do anything.

So here we have a problem where we have a machine which has the same machine inside of
it, an infinitely large machine. And it's got other things inside of it, like a multiplier, which takes
some inputs, and there's a minus 1 box, and things like that. You can imagine that's what it

looks like.

But the important thing is that here | have something that happens before and after, in the
outer machine, the execution of the inner machine. So this machine has to have a life. It has to

exist on both times sides of this machine.

So somehow, | have to have a place to store the things that this thing needs to run. Infinite
objects don't exist in the real world. What we have to do is arrange an illusion that we have an

infinite object, we have an infinite amount of hardware somewhere.

Now of course, illusion's all that really matters. If we can arrange that every time you look at
some infinite object, the part of it that you look at is there, then it's as infinite as you need it to
be. And of course, one of the things we might want to do, just look at this thing over here, is
the organization that we've had so far involves having a part of the machine, which is the
controller, which sits right over here, which is perfectly finite and very simple. We have some
datapaths, which consist of registers and operators. And what | propose to do here is
decompose the machine into two parts, such that there is a part which is fundamentally finite,

and some part where a certain amount of infinite stuff can be kept.

On the other hand this is very simple and really isn't infinite, but it's just very large. But it's so
simple that it could be cheaply reproduced in such large amounts, we call it memory, that we
can make a structure called a stack out of it which will allow us to, in fact, simulate the
existence of an infinite machine which is made out of a recursive nest of many machines. And
the way it's going to work is that we're going to store in this place called the stack the
information required after the inner machine runs to resume the operation of the outer

machine.

So it will remember the important things about the life of the outer machine that will be needed
for this computation. Since, of course, these machines are nested in a recursive manner, then
in fact the stack will only be accessed in a manner which is the last thing that goes in is the first

thing that comes out. So we'll only need to access some little part of this stack memory.

OK, well, let's do it. I'm going to build you a datapath now, and I'm going to write the controller.
And then we're going to execute this to see how you do it. So the factorial machine isn't so

bad. It's going to have a register called the value, where the answer is going to be stored, and
a registered called N, which is where the number I'm taking factorial will be stored, factorial of.

And it will be necessary in some instances to connect VAL to N.

In fact, one nice case of this is if | just said over here, N, because that would be right for N
equal 1N. And I could just move the answer over there if that's important. I'm not worried

about that right now.

And there are things | have to be able to do. Like | have to be able to, as we see here, multiply
N by something in VAL, because VAL is the result of computing factorial. And | have to put the

result back into VAL.

So here we can see that the result of computing a factorial is N times the result of computing a
factorial. VAL will be the representation of the answer of the inner factorial. And so I'm going to
have to have a multiplier here, which is going to sample the value of N and the value of VAL

and put the result back into VAL like that.

I'm also going to have to be able to see if Nis 1. So | need a light bulb. And | suppose the
other thing I'm going to need to have is a way of decrementing N. So I'm going to have a
decrementer, which takes N and is going to put back the result into N. That's pretty much what

I need in my machine.

Now, there's a little bit else | need. It's a little bit more complicated, because I'm also going to
need a way to store, to save away, the things that are going to be needed for resuming the

computation of a factorial after I've done a sub-factorial. What's that? One thing | need is N.

So I'm going to build here a thing called a stack. The stack is a bunch of stuff that I'm going to
write in sequentially. | don't how long it is. The longer it is, the better my illusion of infinity. And
I'm going to have to have a way of getting stuff out of N and into the stack and vice versa. So

I'm going to need a connection like this, which is two-way, whereby | can save the value of N

and then restore it some other time through that connection. This is the stack.

| also need a way of remembering where | was in the computation of factorial in the outer
program. Now in the case of this machine, it isn't very much a problem. Factorial always
returns, has to go back to the place where we multiply by N, except for the last time, when it
has to return to whatever needs the factorial or go to done or stop. However, in general, I'm
going to have to remember where | have been, because | might have computed factorial from

somewhere else. | have to go back to that place and continue there.

So I'm going to have to have some way of taking the place where the marble is in the finite
state controller, the state of the controller, and storing that in the stack as well. And I'm going
to have to have ways of restoring that back to the state of the-- the marble. So | have to have

something that moves the marble to the right place.

Well, we're going to have a place which is the marble now. And it's called the continue register,
called continue, which is the place to put the marble next time | go to continue. That's what

that's for. And so there's got to be some path from that into the controller.

| also have to have some way of saving that on the stack. And | have to have some way of
setting that up to have various constants, a certain fixed number of constants. And that's very
easy to arrange. So let's have some constants here. We'll call this one after-fact. And that's a

constant which we'll get into the continue register, and also another one called fact-done.

So this is the machine | want to build. That's its datapaths, at least. And it mixes a little with the
controller here, because of the fact that | have to remember where | was and restore myself to

that place.

But let's write the program now which represents the controller. I'm not going to write the
define machine thing and the register list, because that's not very interesting. I'm just going to

write down the sequence of instructions that constitute the controller.

So we have assign, to set up, continue to done. We have a loop which says branch if equal 1

fetch N, if Nis 1, then go to the base step of the induction, the simple case.

Otherwise, | have to remember the things that are necessary to perform a sub-factorial. I'm
going to go over here, and | have to perform a sub-factorial. So | have to remember what's

needed after | will be done with that.

See, I'm about to do something terrible. I'm about to change the value of N. But this guy has to
know the old value of N. But in order to make the sub-factorial work, | have to change the
value of N. So | have to remember the old value. And | also have to remember where I've

been. So | save up continue.

And this is an instruction that says, put something in the stack. Save the contents of the
continuation register, which in this case is done, because later I'm going to change that, too,

because | need to go back to after-fact, as well. We'll see that.

We save N, because I'm going to need that for later. Assign to N the decrement of fetch N.
Assign continue, we're going to look at this now, to after, we'll call it. That's a good name for

this, a little bit easier and shorter, and fits in here.

Now look what I'm doing here. I'm saying, if the answer is 1, I'm done. I'm going to have to just
get the answer. Otherwise, I'm going to save the continuation, save N, make N one less than
N, remember I'm going to come back to someplace else, and go back and start doing another

factorial.

However, I've got a different machine [? in me ?] now. N is 1, and continue is something else.

N is N minus 1.

Now after I'm done with that, | can go there. | will restore the old value of N, which is the

opposite of this save over here. | will restore the continuation.

I will then go to here. | will assign to the VAL register the product of N and fetch VAL. VAL fetch

product assign.

And then | will be done. | will have my answer to the sub-factorial in VAL. At that point, I'm
going to return by going to the place where the continuation is pointing. That says, go to fetch

continue.

And then | have finally a base step, which is the immediate answer. Assign to VAL fetch N, and

go to fetch continue. And then I'm done.

Now let's see how this executes on a very simple case, because then we'll see the use of this
stack to do the job we need. This is statically what it's doing, but we have look dynamically at

this. So let's see.

First thing we do is continue gets done. The way that happened is | pushed this. Let's call that

done the way | have it. | push that button. Done goes into there.

Now | also have to set this thing up to have an initial value. Let's consider a factorial of three, a
simple case. And we're going to start out with our stack growing over here. Stacks have their

own little internal state saying where they are, where the next place I'm going to write is.

So now we say, is N 1? The answer is no. So now I'm going to save continue, bang. Now that

done goes in here. And this moves to here, the next place I'm going to write.

Save N 3. OK? Assign to N the decrement of N. That means I've pushed this button. This

becomes 2.

Assign to continue aft. So I've pushed that button. Aft goes in here.

OK, now go to loop, bang, so up to here. Is N 1? No.

So | have to save continue. What's continue? Continue is aft. Push this button. So this moves

to here.

I have to save N. N is over here. | got to 2. Push that button. So a 2 gets written there. And

then this thing moves down here.

OK, save N. Assign N to the decrement of N. This becomes a 1. Assign continue to aft. A-F-T

gets written there again.

Go to loop. Is N equal to 1? Oh, yes, the answer is 1.

OK, go to base step. Assign to VAL fetch of N. Bang, 1 gets put in there.

Go to fetch continue. So we look in continue. Basically, I'm pushing a button over here that
goes to the controller. The continue becomes aft, and all of a sudden, the program's running

here.

I now have to restore the outer version of factorial. So we go here. We say, restore N. So
restore N means take the contents that's here. Push this button, and it goes into here, 2, and

the pointer moves up.

Restore continue, pretty easy. Go push this button. And then aft gets written in here again.

That means this thing moves up. I've gotten rid of something else on my stack.

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

Right, then | go to here, which says, assign to VAL the product of N an VAL. So | push this

button over here, bang. 2 times 1 gives me a 2, get written there.

Go to fetch continue. Continue is aft. | go to aft. Aft says restore N. Do your restore N, means |
take the value over here, which is 3, push this up to here, and move it into here, N. Now it's

pushing that button.

The next thing | do is restore continue. Continue is now going to become done. So this moves
up here when | push this button. Done may or may be there anymore, I'm not interested, but it

certainly is here.

Next thing | do is assign to VAL the product of the fetch of N and the fetch of VAL. That's

pushing this button over here, bang. 2 times 3 is 6. So | get a 6 over here.

And go to fetch continue, whoops, | go to done, and I'm done. And my answer is 6, as you can

see in the VAL register. And in fact, the stack is in the state it originally was in.

Now there's a bit of discipline in using these things like stacks that we have to be careful of.
And we'll see that in the next segment. But first | want to ask if there are any questions for this.

Are there any questions? Yes, Ron.

What happens when you roll off the end of the stack with--

What do you mean, roll off of?

Well, the largest number-- a larger starting point of N requires more memory, correct?

Oh, yes. Well, | need to have a long enough stack. You say, what if | violate my illusion?

Yes.

Well, then the magic doesn't work. The truth of the matter is that every machine is finite. And

for a procedure like this, there's a limit to the number of sub-factorials | could have.

Remember when we were doing the y-operator a while ago, we pointed out that there was a
sequence of exponentiation procedures, each of which was a little better than the previous
one. Well, we're now seeing how we implement that mathematical idea. The limiting process is

only so good as as far as you take the limit.

PROFESSOR:

If you think about it, what am | using here? I'm using about two pieces of memory for every
recursion of this process. If we try to compute factorial of 10,000, that's not a lot of memory.

On the other hand, it's an awful big number.

So the question is, is that a valuable thing in this case. But it really turns out not to be a terrible
limit, because memory is el cheapo, and people are pretty expensive. OK, thank you, let's take

a break.

[MUSIC PLAYING - "JESU, JOY OF MAN'S DESIRING" BY JOHANN SEBASTIAN BACH]

Well, let's see. What I've shown you now is how to do a simple iterative process and a simple
recursive process. | just want to summarize the design of simple machines for specific
applications by showing you a little bit more complicated design, that of a thing that does
doubly recursive Fibonacci, because it will indicate to us, and we'll understand, a bit about the

conventions required for making stacks operate correctly.

So let's see. I'm just going to write down, first of all, the program I'm going to translate. | need
a Fibonacci procedure, it's very simple, which says, if N is less than 2, the result is N,

otherwise it's the sum of Fib of N minus 1 and Fib of N minus 2. That's the plan | have here.

And we're just going to write down the controller for such a machine. We're going to assume
that there are registers, N, which holds the number we're taking Fibonacci of, VAL, which is
where the answer is going to get put, and continue, which is the thing that's linked to the
controller, like before. But I'm not going to draw another physical datapath, because it's pretty

much the same as the last one you've seen.

And of course, one of the most amazing things about computation is that after a while, you
build up a little more features and a few more features, and all of the sudden, you've got
everything you need. So it's remarkable that it just gets there so fast. | don't need much more

to make a universal computer.

But in any case, let's look at the controller for the Fibonacci thing. First thing | want to do is
start the thing up by assign to continue a place called done, called Fib-done here. So that
means that somewhere over here, I'm going to have a label, Fib-done, which is the place

where | go when | want the machine to stop. That's what that is.

And I'm going to make up a loop. It's a place I'm going to go to in order to start up computing a

Fib. Whatever is in N at this point, Fibonacci will be computed of, and we will return to the

place specified by continue.

So what you're going to see here at this place, what | want here is the contract that says, I'm
going to write this with a comment syntax, the contract is N contains arg, the argument.
Continue is the recipient. And that's where it is. At this point, if | ever go to this place, I'm

expecting this to be true, the argument for computing the Fibonacci.

Now the next thing | want to do is to branch. And if N is less than 2-- by the way, I'm using
what looks like Lisp syntax. This is not Lisp. This does not run. What I'm writing here does not

run as a simple Lisp program. This is a representation of another language.

The reason I'm using the syntax of parentheses and so on is because | tend to use a Lisp
system to write an interpreter for this which allows me to simulate the machine I'm trying to
build. | don't want to confuse this to think that this is Lisp code. It's just I'm using a lot of the
pieces of Lisp. I'm embedding a language in Lisp, using Lisp as pieces to make my process of

making my simulator easy. So I'm inheriting from Lisp all of its properties.

Fetch of N 2, | want to go to a place called immediate answer. It's the base step. Now, that's

somewhere over here, just above done. And we'll see it later.

Now, in the general case, which is the part I'm going to write down now, let's just do it. Well,
first of all, I'm going to have to call Fibonacci twice. In each case-- well, in one case at least,
I'm going to have to know what to do to come back and do the next one. | have to remember,
have | done the first Fib, or have | done the second one? Do | have to come back to the place

where | do the second Fib, or do | have to come back to the place where | do the add?

In the first case, over the first Fibonacci, I'm going to need the value of N for computing for the
second one. So | have to store some of these things up. So first I'm going to save continue.
That's who needs the answer. And the reason I'm doing that is because I'm about to assign

continue to the place which is the place | want to go to after.

Let's call it Fib-N-minus-1, big long name, classic Lisp name. Because I'm going to compute
the first Fib of N minus 1, and then after that, | want to come back and do something else.
That's the place | want to go to after I've done the first Fibonacci calculation. And | want to do

a save of N, because I'm going to need it later, after that.

Now I'm going to, at this point, get ready to do the Fibonacci of N minus 1. So assign to N the

difference of the fetch of N and 1. Now I'm ready to go back to doing the Fib loop.

Have | satisfied my contract? And the answer is yes. N contains N minus 1, which is what |
need. Continue contains a place | want to go to when I'm done with calculating N minus 1. So

I've satisfied the contract. And therefore, | can write down here a label, after-Fib-N-minus-1.

Now what am | going to do here? Here's a place where | now have to get ready to do Fib of N
minus 2. But in order to do a Fib of N minus 2, look, | don't know. I've clobbered my N over
here. And presumably my N is counted down all the way to 1 or 0 or something at this point.

So | don't know what the value of N in the N register is.

| want the value of N that was on the stack that | saved over here so that could restore it over
here. | saved up the value of N, which is this value of N at this point, so that | could restore it
after computing Fib of N minus 1, so that | could count that down to N minus 2 and then

compute Fib of N minus 2. So let's restore that. Restore of N.

Now I'm about to do something which is superstitious, and we will remove it shortly. | am about
to finish the sequence of doing the subroutine call, if you will. I'm going to say, well, | also

saved up the continuation, since I'm going to restore it now.

But actually, | don't have to, because I'm not going to need it. We'll fix that in a second. So
we'll do a restore of continue, which is what | would in general need to do. And we're just going
to see what you would call in the compiler world a peephole optimization, which says, whoops,

you didn't have to do that.

OK, so the next thing | see here is that | have to get ready now to do Fibonacci of N minus 2.
But I don't have to save N anymore. The reason why | don't have to save N anymore is
because | don't need N after I've done Fib of N minus 2, because the next thing | do is add. So

I'm just going to set up my N that way. Assign N minus difference of fetch N and 2.

Now | have to finish the setup for calling Fibonacci of N minus 2. Well, | have to save up
continue and assign continue, continue, to the place which is after Fib N 2, that place over
here somewhere. However, I've got to be very careful. The old value, the value of Fib of N

minus 1, I'm going to need later.

The value of Fibonacci of N minus 1, I'm going to need. And | can't clobber it, because I'm
going to have to add it to the value of Fib of N minus 2. That's in the value register, so I'm

going to save it. So | have to save this right now, save up VAL. And now | can go off to my

subroutine, go to Fib loop.

Now before | go any further and finish this program, | just want to look at this segment so far
and see, oh yes, there's a sequence of instructions here, if you will, that | can do something

about. Here | have a restore of continue, a save of continue, and then an assign of continue,
with no other references to continue in between. The restore followed by the save leaves the

stack unchanged.

The only difference is that | set the continue register to a value, which is the value that was on
the stack. Since | now clobber that value, as in it was never referenced, these instructions are

unnecessary. So we will remove these.

But | couldn't have seen that unless | had written them down. Was that really true? Well, | don't

know.

OK, so we've now gone off to compute Fibonacci of N minus 2. So after that, what are we
going to do? Well, | suppose the first thing we have to do-- we've got two things. We've got a
thing in the value register which is now valuable. We also have a thing on the stack that can be
restored into the value register. And what | have to be careful with now is | want to shuffle this

right so | can do the multiply.

Now there are various conventions | might use, but I'm going to be very picky and say, I'm only
going to restore into a register I've saved from. If that's the case, | have to do a shuffle here.
It's the same problem with how many hands | have. So I'm going to assign to N, because I'm
not going to need N anymore, N is useless, the current value of VAL, which was the value of

Fib of N minus 2.

And I'm going to restore the value register now. This restore matches this save. And if you're
very careful and examine very carefully what goes on, restores and saves are always

matched. Now there's an outstanding save, of course, that we have to get rid of soon.

And so | restored the value register. Now | restore the continue one, which matches this one,
dot, dot, dot, dot, dot, dot, dot, down to here, restoring that continuation. That continuation is a
continuation of Fib of N, which is the problem | was trying to solve, a major problem I'm trying
to solve. So that's the guy | have to go back to who wants Fib of N. | saved them all the way up

here when | realized N was not less than 2. And so | had to do a complicated operation.

Now I've got everything | need to do it. So I'm going to restore that, assign to VAL the sum of
fetch VAL and fetch of N, and go to continue. So now I've returned from computing Fibonacci
of N, the general case. Now what's left is we have to fix up a few detalils, like there's the base
case of this induction, immediate answer, which is nothing more than assign to VAL fetch of N,
because N was less than 2, and therefore, the answer is N in our original program, and return

continue-- bobble, bobble almost-- and finally Fib done.

So that's a fairly complicated program. And the reason | wanted you see to that is because |
want you to see the particular flavors of stack discipline that | was obeying. It was first of all, |
don't want to take anything that I'm not going to need later. | was being very careful. And it's
very important. And there are all sorts of other disciplines people make with frames and things
like that of some sort, where you save all sorts of junk you're not going to need later and
restore it because, in some sense, it's easier to do that. That's going to lead to various

disasters, which we'll see a little later.

It's crucial to say exactly what you're going to need later. It's an important idea. And the
responsibility of that is whoever saves something is the guy who restores it, because he needs
it. And in such discipline, you can see what things are unnecessary, operations that are

unimportant.

Now, one other thing | want to tell you about that's very simple is that, of course, the picture
you see is not the whole picture. Supposing | had systems that had things like other
operations, CAR, CDR, cons, building a vector and referencing the nth element of it, or things
like that. Well, at this level of detail, whatever it is, we can conceptualize those as primitive
operations in the datapath. In other words, we could say that some machine that, for example,
has the append machine, which has to do cons of the CAR of x with the append of the CDR of
x and y, well, gee, that's exactly the same as the factorial structure. Well, it's got about the

same structure.

And what do we have? We have some sort of things in it which may be registers, x and y, and
then x has to somehow move to y sometimes, x has to get the value of y. And then we may
have to be able to do something which is a cons. | don't remember if | need to like this is in this
system, but cons is sort of like subtract or add or something. It combines two things, producing
a thing which is the cons, which we may then think goes into there. And then maybe a thing
called the CAR, which will produce-- | can get the CAR or something. And maybe | can get the

CDR of something, and so on.

But we shouldn't be too afraid of saying things this way, because the worst that could happen
is if we open up cons, what we're going to find is some machine. And cons may in fact overlap
with CAR and CDR, and it always does, in the same way that plus and minus overlap, and
really the same business. Cons, CAR, and CDR are going to overlap, and we're going to find a
little controller, a little datapath, which may have some registers in it, some stuff like that. And
maybe inside it, there may also be an infinite part, a part that's semi-infinite or something,

which is a lot of very uniform stuff, which we'll call memory.

And | wouldn't be so horrified if that were the way it works. In fact, it does, and we'll talk about

that later. So are there any questions?

Gee, what an unquestioning audience. Suppose | tell you a horrible pile of lies. OK. Well, thank

you. Let's take our break.

[MUSIC PLAYING - "JESU, JOY OF MAN'S DESIRING" BY JOHANN SEBASTIAN BACH]

