6.003 Homework \#7

This homework assignment will not be collected. Solutions will be posted.

Problems

1. Second-order systems

The impulse response of a second-order CT system has the form

$$
h(t)=e^{-\sigma t} \cos \left(\omega_{d} t+\phi\right) u(t)
$$

where the parameters σ, ω_{d}, and ϕ are related to the parameters of the characteristic polynomial for the system: $s^{2}+B s+C$.
a. Determine expressions for σ and $\omega_{d}($ not $\phi)$ in terms of B and C.
b. Determine

- the time required for the envelope $e^{-\sigma t}$ of $h(t)$ to diminish by a factor of e,
- the period of the oscillations in $h(t)$, and
- the number of periods of oscillation before $h(t)$ diminishes by a factor of e. Express your results as functions of B and C only.
c. Estimate the parameters in part b for a CT system with the following poles:

The unit-sample response of a second-order DT system has the form

$$
h[n]=r_{0}^{n} \cos \left(\Omega_{0} n+\Phi\right) u[n]
$$

where the parameters r_{0}, Ω_{0}, and Φ are related to the parameters of the characteristic polynomial for the system: $z^{2}+D z+E$.
d. Determine expressions for r_{0} and $\Omega_{0}($ not $\Phi)$ in terms of D and E.
e. Determine

- the length of time required for the envelope r_{0}^{n} of $h[n]$ to diminish by a factor of e.
- the period of the oscillations (i.e., $\frac{2 \pi}{\Omega_{0}}$) in $h[n]$, and
- the number of periods of oscillation in $h[n]$ before it diminishes by a factor of e.

Express your results as functions of D and E only.
f. Estimate the parameters in part e for a DT system with the following poles:

2. Matches

The following plots show pole-zero diagrams, impulse responses, Bode magnitude plots, and Bode angle plots for six causal CT LTI systems. Determine which corresponds to which and fill in the following table.

	$h(t)$	Magnitude
PZ diagram 1:		Angle
PZ diagram 2:		
PZ diagram 3:		
PZ diagram 4:		
PZ diagram 5:		
PZ diagram 6:		

Impulse response 1

Impulse response 4

Impulse response 2

Impulse response 5

Bode Magnitude 2

Bode Magnitude 5

Impulse response 3

Impulse response 6

Bode Magnitude 3

Bode Magnitude 6

Bode Angle 1

Bode Angle 4

Bode Angle 2

Bode Angle 3

Bode Angle 6

Engineering Design Problems

3. Desired oscillations

The following feedback circuit was the basis of Hewlett and Packard's founding patent.

a. With $R=1 \mathrm{k} \Omega$ and $C=1 \mu \mathrm{~F}$, sketch the pole locations as the gain K varies from 0 to ∞, showing the scale for the real and imaginary axes. Find the K for which the system is barely stable and label your sketch with that information. What is the system's oscillation period for this K ?
b. How do your results change if R is increased to $10 \mathrm{k} \Omega$?

4. Robotic steering

Design a steering controller for a car that is moving forward with constant velocity V.

You can control the steering-wheel angle $w(t)$, which causes the angle $\theta(t)$ of the car to change according to

$$
\frac{d \theta(t)}{d t}=\frac{V}{d} w(t)
$$

where d is a constant with dimensions of length. As the car moves, the transverse position $p(t)$ of the car changes according to

$$
\frac{d p(t)}{d t}=V \sin (\theta(t)) \approx V \theta(t)
$$

Consider three control schemes:
a. $w(t)=K e(t)$
b. $w(t)=K_{v} \dot{e}(t)$
c. $w(t)=K e(t)+K_{v} \dot{e}(t)$
where $e(t)$ represents the difference between the desired transverse position $x(t)=0$ and the current transverse position $p(t)$. Describe the behaviors that result for each control scheme when the car starts with a non-zero angle $\left(\theta(0)=\theta_{0}\right.$ and $\left.p(0)=0\right)$. Determine the most acceptable value(s) of K and/or K_{v} for each control scheme or explain why none are acceptable.

MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

