6.003 Homework #9

Due at the beginning of recitation on November 9, 2011.

Problems

1. Fourier varieties

a. Determine the Fourier series coefficients of the following signal, which is periodic in T = 10.

b. Determine the Fourier transform of the following signal, which is zero outside the indicated range.

c. What is the relation between the answers to parts a and b? In particular, derive an expression for a_k (the solution to part a) in terms of $X_2(j\omega)$ (the solution to part b).

$$a_k =$$

6.003 Homework #9 / Fall 2011

d. Determine the time waveform that corresponds to the following Fourier transform, which is zero outside the indicated range.

e. What is the relation between the answers to parts b and d? In particular, derive an expression for $x_3(t)$ (the solution to part d) in terms of $X_2(j\omega)$ (the solution to part b).

 $x_3(t) =$

2. Fourier transform properties

Let $X(j\omega)$ represent the Fourier transform of

.

$$x(t) = \begin{cases} e^{-t} & 0 < t < 1\\ 0 & \text{otherwise} \end{cases}$$

Express the Fourier Transforms of each of the following signals in terms of $X(j\omega)$.

3. Fourier transforms

Find the Fourier transforms of the following signals.

a.
$$x_1(t) = e^{-|t|} \cos(2t)$$

$$X_1(j\omega) =$$

b.
$$x_2(t) = \frac{\sin(2\pi t)}{\pi(t-1)}$$

 $X_2(j\omega) =$

d.
$$x_4(t) = (1 - |t|) u(t + 1)u(1 - t)$$

 $X_4(j\omega) =$

Engineering Design Problem

4. Parseval's theorem

Parseval's theorem relates time- and frequency-domain methods for calculating the average energy of a signal as follows:

$$\frac{1}{T} \int_T |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

where a_k represents the Fourier series coefficients of the periodic signal x(t) with period T.

- a. We can derive Parseval's theorem from the properties of CT Fourier series.
 - 1. Let $y(t) = |x(t)|^2$. Find the Fourier series coefficients b_k of y(t). [Hint: $|x(t)|^2 = x(t)x^*(t)$.]
 - 2. Use the result from the previous part to derive Parseval's theorem.
- **b.** Let $x_1(t)$ represent the input to an LTI system, where

$$x_1(t) = \sum_{k=-\infty}^{\infty} \alpha^{|k|} e^{jk\frac{\pi}{4}t}$$

for $0 < \alpha < 1$. The frequency response of the system is

$$H(j\omega) = \begin{cases} 1 & |\omega| < W \\ 0 & \text{otherwise.} \end{cases}$$

What is the minimum value of W so that the average energy in the output signal will be at least 90% of that in the input signal.

5. Filtering

The point of this question is to understand how the magnitude of a filter affects the output and how the angle of a filter affects the output. Consider the following RC circuit as a "filter."

Assume that the input $v_i(t)$ is the following square wave.

If the fundamental frequency of the square wave $(\frac{2\pi}{T})$ is equal to the cutoff frequency of the RC circuit $(\frac{1}{RC})$ then the output $v_o(t)$ will have the following form.

We can think of the RC circuit as "filtering" the square wave as shown below.

The RC filter has two effects: (1) The amplitudes of the Fourier components of the input (vertical red lines in upper panel) are multiplied by the magnitude of the frequency response $(|H(j\omega)|)$. (2) The phase of the Fourier components (red dots in lower panel) are shifted by the phase of the frequency response $(\angle H(j\omega))$.

a. Determine (using whatever method you find convenient) the output that would result if $v_i(t)$ were passed through a filter whose magnitude is $|H(j\omega)|$ (as above) but whose phase function is 0 for all frequencies. Compare the result with $v_o(t)$ above.

6.003 Homework #9 / Fall 2011

b. Determine (using whatever method you find convenient) the output that would result if $v_i(t)$ were passed through a filter whose phase function is $\angle H(j\omega)$ (as above) but whose magnitude function is 1 for all frequencies. Compare the result with $v_o(t)$ above.

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.