
6.003 Homework #2 Solutions 

Problems 
1. Finding outputs 

Let hi[n] represent the nth sample of the unit-sample response of a system with system 
functional Hi(R). Determine hi[2] and hi[119] for each of the following systems: 

a. H1(R) = 
R 

1 − 3
 
4 R   118
3
 3
 

h1[2] = h1[119] =
4
 4


R 

1 − 3 
4 R 

= R

 
1 

1 − 3 
4 R

 
= R

 
1 + 

3 
4R + 

9 
16R2 + · · ·

 
= R + 

3 
4R2 + 

9 
16R3 + · · · +

 
3 
4

 n−1 

Rn + · · · 

1 − 1
 
16 R

4 

b. H2(R) = 
1 − 1
 

2 R 

1
 
h2[2] = h2[119] = 

4
 
0
 

       1 − 1
 
16 R

4 1 1 1 1 1 
 2
 

= 1 − = 1 − 1 + 2R + + · · ·
1 − 1

2 R 16R4
1 − 1

2 R 16R4
2R    

1 1 1 1 1 1 1
= 1 + 2R + 22 R
2 + 23 R

3 + 24 − 24 R4 + 25 − 25 R5 · · ·
 

1 1 1
= 1 + 2R + 22 R
2 + 23 R

3 
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1
 c. H3(R) = 

(1 − 12 R)(1 − 14 R) 

h3[2] = 2 1 − 1 = 7
 
22 42 16
 h3[119] = 

 1  119  1  119
2 −2 4


1
d. H4(R) = (1 − R)2 

h4[2] = 3
 h4[119] = 120
 

1 
(1 − R)2 =

 
1 + R + R2 + R3 + · · ·

  
1 + R + R2 + R3 + · · ·

 
=

 
1 + R + R2 + R3 + · · ·

 
+
 
R + R2 + R3 + R4 · · ·

 
+
 
R2 + R3 + R4 + R5 · · ·

 
+
 
R3 + R4 + R5 + R6 · · ·

 
+ · · · 

= 1 + 2R + 3R2 + 4R3 + · · · 

1
(1− 1

2R)(1− 1
4R)

= 2
1− 1

2R
− 1

1− 1
4R

= 2
(

1 + 1
2R+ 1

22R
2 + · · ·

)
−
(

1 + 1
4R+ 1

42R
2 + · · ·

)
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2. Feedback 

Consider the following system. 

+ α β
R

1− 3
2R

R

X Y
−

Assume that X is the unit-sample signal, x[n] = δ[n]. Determine the values of α and β 
for which y[n] is the following sequence (i.e., y[0], y[1], y[2], . . .): 

3 7 15 310 , 1 , , . . . 2 
, 4 

, 8 16 
, 

Enter the values of α and β in the boxes below. Enter none if the value cannot be 
determined from the information provided. 

1α = β = 22 

Express the block diagram as a system functional:

Y

X
=

αR
1− 3

2R

1 + αR2

1− 3
2R

β = αβR
1− 3

2R+ αR2 .

The poles are at

3
4 ±

√
9
16 − α .

Now express y[n] as a weighted sum of geometrics:

y[n] = 2× 1n − 2×
(

1
2

)n
; n ≥ 0

Thus the poles must be at z = 1 and z = 1
2 . It follows that α must be 1

2 . Then the system
functional is

Y

X
=

1
2βR

1− 3
2R+ 1

2R2 = β

1−R −
β

1− 1
2R

and β must be 2.
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3. Mystery Feedback 

Consider the following feedback system where F is the system functional for a system 
composed of just adders, gains, and delay elements. 

+ α FX Y
−

If α = 10 then the closed-loop system functional is known to be 

1 + R 
    Y
 =
 

X
 α=10 2 + R
 

Determine the closed-loop system functional when α = 20.
 

Y
 
X


    

α=20 

=
 
2 + 2R
 
3 + 2R
 

In general 
Y αF = 
X 1 + αF 

If α = 10 

Y 10F 1 + R = = 
X 1 + 10F 2 + Rα=10 

We can solve for F by equating the reciprocals of these expressions, 
1 2 + R+ 1 = 10F 1 + R 

1 2 + R 1 

    

1 = −= 

    
10F 1 + R 1 + R 

from which it follows that 10F = 1 + R. Then if α = 20, 
Y 20F 2 + 2R 2 + 2R = = = 
X 1 + 20F 1 + 2 + 2R 3 + 2Rα=20 
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4. Ups and Downs 

The unit-sample response of a linear, time-invariant system is given by 

h[n] =
 

⎧ ⎪⎨ ⎪⎩
 

0 n < 0 
1 n = 0, 3, 6, 9, ... 
2 n = 1, 4, 7, 10, ...
 
3 n = 2, 5, 8, 11, ...
 

a. Determine a closed-form expression for the system functional for this system. 

1 + 2R + 3R2 
H(R) = 

1 − R3 

H(R) = 1 + 2R + 3R2 + R3 + 2R4 + 3R5 + R6 + 2R7 + 3R8 + R9 + · · · 
= (1 + 2R + 3R2)(1 + R3 + R6 + · · ·) 

= 
1 + 2R + 3R2 

1 − R3 

b. Enter the poles of the system in the box below. 

j2π/3 −j2π/31 , e , e

H(z) = 
1 + 2 

z + 3 
z2 

1 − 1 
z3 

= 
z2 + 2z + 3 

z3 − 1 

The poles are at the roots of z3 − 1, i.e., everywhere that z3 = 1. There are three cube 
roots of 1: 1, ej2π/3, and e−j2π/3. 
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5. Characterizing a system from its unit-sample response 

The first 30 samples of the unit-sample response of a linear, time-invariant system are 
given in the following table. 

n h[n] n h[n] 
0 1 15 10761680 
1 2 16 32285041 
2 7 17 96855122 
3 20 18 290565367 
4 61 19 871696100 
5 182 20 2615088301 
6 547 21 7845264902 
7 1640 22 23535794707 
8 4921 23 70607384120 
9 14762 24 211822152361 
10 44287 25 635466457082 
11 132860 26 1906399371247 
12 398581 27 5719198113740 
13 1195742 28 17157594341221 
14 3587227 29 51472783023662 

Determine the poles of this system. Enter the number of poles and list the pole locations 
below. If a pole is repeated k times, then enter that pole location k times. If there are 
more than 5 poles, enter just 5 of the pole locations. If there are fewer than 5 poles, leave 
the unused entries blank. 

# of poles: 2

locations: −1 3

Y 
X 

= 
1 

1 − 2R − 3R2 = 
1 

(1 + R)(1 − 3R) 

h[n] = 
1 
4(−1)n + 

3 
43n 
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Engineering Design Problems 
6. Unit-sample response 

Consider a linear, time-invariant system whose unit-sample response h[n] is shown below. 

n

h[n] =
{(1

2
)n/2

n = 0, 2, 4, 6, 8, . . . ,∞
0 otherwise

−1 0 1 2 3 4 5 6 7 8 9 10

1
2 1

4 1
8 1

16
1
32

Part a. Is it possible to represent this system with a finite number of poles? 

Yes or No: Yes 

If yes, enter the number of poles and list the pole locations below. If a pole is repeated 
k times, then enter that pole location k times. If there are more than 5 poles, enter just 
5 of the pole locations. If there are fewer than 5 poles, leave the unused entries blank. 

# of poles: 2

locations:
√

2
2 −

√
2

2

If no, briefly explain why not. 

1 1 1 1 1 
H = 1 + 2R2 + 4R4 + 8R6 + · · · = 16R8 

1 − 1
2 R2 

Substitute R → 1 : z 

2 2z z
H(z) = = 1 1z2 − 1 (z − √ )(z + √ )2 2 2 

There are two poles: 
√

1 2 
z = ±√ = ±

2 2 



8 6.003 Homework #2 Solutions / Fall 2011 

Part b. Is it possible to implement this system with a finite number of adders, gains, 
and delays (and no other components)? 

Yes or No: Yes 

If yes, sketch a block diagram for the system in the following box. 

+

1
2 Delay Delay

X Y

If no, briefly explain why not.
 

H = 
Y 
X 

= 1 + 
1 
2R2 + 

1 
4R4 + 

1 
8R6 + 

1 
16R8 · · · = 

1 

1 − 1 
2 R2 

y[n] − 
1 
2y[n − 2] = x[n] 
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7. Repeated Poles 

Consider a system H whose unit-sample response is  
n + 1 for n ≥ 0

h[n] = 0 otherwise . 

a. Determine the poles of H. 

First find a difference equation. Try first order: 

y[n] = a1y[n − 1] + b0x[n] . 

Since x[n] = 0 for n ≥ 1, we would need 

y[n] = a1y[n − 1] for n ≥ 1 

y[1] = a1y[0] : 2 = a1 

y[2] = a1y[1] : 3 = 2a1 

y[3] = a1y[2] : 4 = 3a1 

y[4] = a1y[3] : 5 = 4a1 

Clearly there is no solution of this form. 
Try second order: 

y[n] = a1y[n − 1] + a2y[n − 2] + b0x[n] . 

Now 

y[n] = a1y[n − 1] + a2y[n − 2] for n ≥ 1 

y[1] = a1y[0] + a2y[−1] : 2 = 1a1 + 0a2 

y[2] = a1y[1] + a2y[0] : 3 = 2a1 + 1a2 

y[3] = a1y[2] + a2y[1] : 4 = 3a1 + 2a2 

y[4] = a1y[3] + a2y[2] : 5 = 4a1 + 3a2 

From the first of these equations, we find that a1 = 2. All of the others are satisfied if 
a2 = −1. The resulting difference equation is 

y[n] = 2y[n − 1] − y[n − 2] + x[n] 

and the corresponding function is 

Y 
X 

= 
1 

1 − 2R + R2 = 
1 

(1 − R)(1 − R) 
. 

There are two poles, each at z = 1. 

b. H can be written as the cascade of two identical subsystems, each called G. Determine 
the difference equation for G. 

The functional for G is 
1 

1 − R 
. Therefore the difference equation for G is 

y[n] = y[n − 1] + x[n] . 
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d.	 Because the system functional has two poles at the same location, the unit-sample 
response of H cannot be expressed as a weighted sum of geometric sequences, 

n nh[n] = a0z0 + a1z1 ; n ≥ 0 . 

However, h can be written in the previous form if the poles of H are displaced from 
their true positions by a small amounts (e.g., one pole by +f and the other by −f). 
Determine a0, a1, z0, and z1 as functions of f. 

e. Compare the results of the approximation in part d for different values of f. 

The following Python program tabulates results 

for	 e in [0.1,0.01,0.001]:
 
for n in range(11):
 

print "{0:10.5f} {1:10.5f} {2:10.5f} {3:3d}".format( 
((1+e)**(n+1))/(2*e), 
-((1-e)**(n+1))/(2*e), 
((1+e)**(n+1))/(2*e)-((1-e)**(n+1))/(2*e), 
n+1) 

print 

which are shown in the following table. 

We can develop a block diagram for G directly from the difference equation found
in the previous part. Then H is just the cascade of two such systems, as illustrated
below:

+

R

+

R

X Y
W

Since G is an accumulator, it’s unit-sample response is the accumulated values of a
unit-sample, which is a unit step signal,

w[n] =
{ 1 n ≥ 0

0 otherwise.
The output y is then the accumulated values of a unit-step signal,

y[n] =
{
n+ 1 n ≥ 0
0 otherwise.

Consider the following approximation to H:

H ≈ 1(
1− (1 + ε)R

)(
1− (1− ε)R

) = 1
2ε

(
1 + ε

1− (1 + ε)R −
1− ε

1− (1− ε)R

)
The corresponding unit-sample response is

h[n] = 1 + ε

2ε (1 + ε)n − 1− ε
2ε (1− ε)n

so that a0 = (1 + ε)/2ε, a1 = −(1− ε)/2ε, z0 = 1 + ε, and z1 = 1− ε.

c. Draw a block diagram for H using just adders, gains, and delays. Use the block
diagram to explain why the unit-sample response of H is the sequence h[n] = n+ 1,
n 0.≥
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epsilon = 0.1 
n a_0 z_0**n a_1 z_1**n sum h[n] 
0 5.50000 -4.50000 1.00000 1 
1 6.05000 -4.05000 2.00000 2 
2 6.65500 -3.64500 3.01000 3 
3 7.32050 -3.28050 4.04000 4 
4 8.05255 -2.95245 5.10010 5 
5 8.85781 -2.65721 6.20060 6 
6 9.74359 -2.39148 7.35210 7 
7 10.71794 -2.15234 8.56561 8 
8 11.78974 -1.93710 9.85264 9 
9 12.96871 -1.74339 11.22532 10 

10 14.26558 -1.56905 12.69653 11 

epsilon = 0.01 
n a_0 z_0**n a_1 z_1**n sum h[n] 
0 50.50000 -49.50000 1.00000 1 
1 51.00500 -49.00500 2.00000 2 
2 51.51505 -48.51495 3.00010 3 
3 52.03020 -48.02980 4.00040 4 
4 52.55050 -47.54950 5.00100 5 
5 53.07601 -47.07401 6.00200 6 
6 53.60677 -46.60327 7.00350 7 
7 54.14284 -46.13723 8.00560 8 
8 54.68426 -45.67586 9.00840 9 
9 55.23111 -45.21910 10.01200 10 

10 55.78342 -44.76691 11.01650 11 

epsilon = 0.001 
n a_0 z_0**n a_1 z_1**n sum h[n] 
0 500.50000 -499.50000 1.00000 1 
1 501.00050 -499.00050 2.00000 2 
2 501.50150 -498.50150 3.00000 3 
3 502.00300 -498.00300 4.00000 4 
4 502.50501 -497.50500 5.00001 5 
5 503.00751 -497.00749 6.00002 6 
6 503.51052 -496.51048 7.00004 7 
7 504.01403 -496.01397 8.00006 8 
8 504.51804 -495.51796 9.00008 9 
9 505.02256 -495.02244 10.00012 10 

10 505.52758 -494.52742 11.00017 11 

The approximation is increasingly accurate as f → 0. However, the amplitudes of the 
fundamental modes also get very large with decreasing f. 
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8. Masses and Springs, Forwards and Backwards 

a. Determine a differential equation that relates the input x(t) and output y(t). 

The following figure illustrates a mass and spring system. The input x(t) represents the 
position of the top of the spring. The output y(t) represents the position of the mass. 

x(t)

y(t)

The mass is M = 1 kg and the spring constant is K = 1 N/m. Assume that the spring 
obeys Hooke’s law and that the reference positions are defined so that if the input x(t) 
is equal to zero, then the resting position of y(t) is also zero. 

Newton’s law says that the force on the mass is equal to its mass times its acceleration, 

F = M 
d2y(t) 

dt2 . 

Hooke’s law says that the force exerted by the spring is proportional to its elongation, 

F = K(x(t) − y(t)). 

Combining, 

M 
d2y(t) 

dt2 + Ky(t) = Kx(t). 

Since M = K = 1, 
d2y(t) 

dt2 + y(t) = x(t). 

b. Calculate the step response of the system.
 

Since this is a linear differential equation with constant coefficients, and since the input 
is 1 for t > 0, the step response will have the following form, 

s(t) = Ae−pt + B ; t > 0. 

Substituting into the differential equation yields 

p 2Ae−pt + Ae−pt + B = 1 ; t > 0. 

Therefore, B = 1 and p = ±j and 

s(t) = Cejt + De−jt + 1 ; t > 0. 

The step response is defined as the response to a step when the system is initially at 
rest. Rest means that s(t) = 0 for t < 0. If s(t) is zero for t < 0, then both s(t) and 
its time derivative are continuous through zero, since the force from the spring is finite 
and F = M ̈s(t). Thus 

s(0) = C + D + 1 = 0 
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and 
ds(t) 

dt 
= jC − jD = 0 

and therefore C = D = −0.5. The result is 

s(t) = (1 − 0.5ejt − 0.5e −jt)u(t) = (1 − cos t)u(t). 

c.	 The differential equation in part a contains a second derivative (if you did part a 
correctly). We wish to develop a forward-Euler approximation for this derivatve. 
One method is to write the second-order differential equation in part a as a part of 
first order differential equations. Then apply the forward-Eular approximation to the 
first order derivatives: 

y[n + 1] − y[n]≈	 . 
T

Use this approach to find a difference equation to approximate the behavior of the 
mass and spring system. Determine the step response of the system and compare 
your results to those in part b. 

Start with the differential equation 

d2y(t) 

dt2 + y(t) = x(t). 

Then let 

z(t) = 
dy(t) 

dt 

so that 
dz(t) 

dt 
+ y(t) = x(t). 

Make Euler forward appoximations to each of these to get 

z[n + 1] − z[n] 
T 

+ y[n] = x[n] 

and 
y[n + 1] − y[n] 

T 
= z[n]. 

Substitute the latter equation into the former to get 
y[n+2]−y[n+1] 

T − y[n+1]−y[n] 
T 

T 
+ y[n] = x[n] 

which is 

y[n + 2] − 2y[n + 1] + (1 + T 2)y[n] = T 2 x[n]. 

The following Matlab code solves this difference equation by setting y(1) = y(2) = 0 
and then recursively finding y(n + 2). 

T = 0.1; 
y(1)=0; 
y(2)=0; 
t(1)=0; 
t(2)=T; 

dy(t)
dt

∣∣∣
t=nT
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for n = 1:198 
y(n+2)=2*y(n+1)-y(n)-T*T*y(n)+T*T; 
t(n+2)=t(n+1)+T; 
end 
plot(t,y,’-’); 

The following plot shows the result. 

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

3

4

analytic solution

numerical solution

Notice that the numerical approximation DIVERGES! The rate of divergence depends 
on the step size. 

d. An alternative to the forward-Euler approximation is the backward-Euler approxima
tion: 

≈ 
y[n] − y[n − 1] 

. 
T 

Repeat the exercise in the previous part, but using the backward-Euler approximation 
instead of the forward-Euler approximation. 

Start with the pair of first order differential equations 

z(t) = 
dy(t) 

dt 

and 
dz(t) 

dt 
+ y(t) = x(t). 

Make Euler backward appoximations to each of these to get 

z[n] − z[n − 1] 
T 

+ y[n] = x[n] 

and 
y[n] − y[n − 1] 

T 
= z[n]. 

Substitute the latter equation into the former to get 
y[n]−y[n−1] 

T − y[n−1]−y[n−2] 
T 

T 
+ y[n] = x[n] 

dy(t)
dt

∣∣∣∣
t=nT
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which is 

(1 + T 2)y[n] − 2y[n − 1] + y[n − 2] = T 2 x[n]. 

The following Matlab code solves this difference equation by setting y(1) = y(2) = 0 
and then recursively finding y(n). 

T = 0.1; 
y(1)=0; 
y(2)=0; 
t(1)=0; 
t(2)=T; 
a(1)=0; 
a(2)=1-cos(T); 
for n = 1:198 
y(n+2)=(2*y(n+1)-y(n)+T*T)/(1+T*T); 
t(n+2)=t(n+1)+T; 
a(n+2)=1-cos(t(n+2)); 
end 
plot(t,y,’-’,t,a,’-’); 

The following plot shows the result. 

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

3

4

analytic solution

numerical solution

This time the numerical solution is a cosine wave with diminishing amplitude. The 
analytic result is simply an offset cosine. Thus the numerical solutions based on both 
the Euler forward and Euler backward methods deviate systematically (but oppositely) 
from the exact solution. 

e. The forward-Euler method approximates the second derivative at t = nT as 

y[n + 2] − 2y[n + 1] + y[n]
 = 
T 2 .
 

The backward-Euler method approximates the second derivative at t = nT as 

y[n] − 2y[n − 1] + y[n − 2] = . 
T 2 

 

Consider a compromise based on a centered approximation: 

d2y(t)
dt2

∣∣∣∣
t=nT

d2y(t)
dt2

∣∣∣∣
t=nT

=
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y[n + 1] − 2y[n] + y[n − 1]
 = 
T 2 .
 

 

Use this approximation to determine the step response of the system. Compare your 
results to those in the two previous parts of this problem. 

This time, let 
y[n]−y[n−1] 

T − y[n−1]−y[n−2] 
T 

T 
+ y[n] = x[n] 

which is 
y[n + 1] − (2 − T 2)y[n] + y[n − 1] = T 2 x[n]. 

The following Matlab code solves this difference equation by setting y(1) = y(2) = 0 
and then recursively finding y(n + 1). 

T = 0.1; 
y(1)=0; 
y(2)=0; 
t(1)=0; 
t(2)=T; 
a(1)=0; 
a(2)=1-cos(T); 
for n = 1:198 
y(n+2)=2*y(n+1)-y(n)-T*T*y(n+1)+T*T; 
t(n+2)=t(n+1)+T; 
a(n+2)=1-cos(t(n+2)); 
end 
plot(t,y,’-’,t,a,’-’); 

The following plot shows the result. 

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

3

4

analytic solution

numerical solution

The numerical results using the centered rule are quite similar to the analytic results. 
Thus the centered rule is significantly better than the Euler forward or Euler backward 
rule (at least for this problem). 

d2y(t)
dt2

∣∣∣
t=nT



MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems
Fall 2011
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

