6.003 Homework \#7 Solutions

Problems

1. Second-order systems

The impulse response of a second-order CT system has the form

$$
h(t)=e^{-\sigma t} \cos \left(\omega_{d} t+\phi\right) u(t)
$$

where the parameters σ, ω_{d}, and ϕ are related to the parameters of the characteristic polynomial for the system: $s^{2}+B s+C$.
a. Determine expressions for σ and ω_{d} (not ϕ) in terms of B and C.

Express the impulse response in terms of complex exponentials:

$$
h(t)=\frac{1}{2} e^{-\sigma t}\left(e^{j \omega_{d} t+j \phi}+e^{-j \omega_{d} t-j \phi}\right) u(t)=\frac{1}{2} e^{j \phi} e^{\left(-\sigma+j \omega_{d}\right) t} u(t)+\frac{1}{2} e^{-j \phi} e^{\left(-\sigma-j \omega_{d}\right) t} u(t)
$$

The impulse response is a weighted sum of modes of the form $e^{s_{0} t}$ and $e^{s_{1} t}$ where s_{0} and s_{1} are the poles. Thus the poles of the system are at $s=-\sigma \pm j \omega_{d}$. The characteristic polynomial has the form $s^{2}+B s+C=\left(s+\sigma+j \omega_{d}\right)\left(s+\sigma-j \omega_{d}\right)=(s+\sigma)^{2}+\omega_{d}^{2}$. Thus $B=2 \sigma$ and $C=\sigma^{2}+\omega_{d}^{2}$. Solving, we find that

$$
\begin{aligned}
& \sigma=\frac{B}{2} \\
& \omega_{d}=\sqrt{C-\frac{1}{4} B^{2}} .
\end{aligned}
$$

b. Determine

- the time required for the envelope $e^{-\sigma t}$ of $h(t)$ to diminish by a factor of e,
- the period of the oscillations in $h(t)$, and
- the number of periods of oscillation before $h(t)$ diminishes by a factor of e.

Express your results as functions of B and C only.
The time to decay by a factor of e is

$$
\frac{1}{\sigma}=\frac{2}{B} .
$$

The period is

$$
\frac{2 \pi}{\omega_{d}}=\frac{2 \pi}{\sqrt{C-\frac{1}{4} B^{2}}} .
$$

The number of periods before diminishing a factor of e is

$$
\frac{\frac{2}{B}}{\frac{2 \pi}{\sqrt{C-\frac{1}{4} B^{2}}}}=\frac{\sqrt{C-\frac{1}{4} B^{2}}}{\pi B} .
$$

Notice that this last answer is equivalent to Q / π where $Q=\frac{\omega_{d}}{2 \sigma}$.
c. Estimate the parameters in part b for a CT system with the following poles:

From the plot $\sigma=10$ and $\omega_{d}=100$.
The time to decay by a factor of e is 0.1.
The period is $\frac{2 \pi}{\omega_{d}}=\frac{2 \pi}{100}=0.0628$.
The number of cycles before decaying by e is $\frac{10}{2 \pi} \approx 1.6$
The unit-sample response of a second-order DT system has the form

$$
h[n]=r_{0}^{n} \cos \left(\Omega_{0} n+\Phi\right) u[n]
$$

where the parameters r_{0}, Ω_{0}, and Φ are related to the parameters of the characteristic polynomial for the system: $z^{2}+D z+E$.
d. Determine expressions for r_{0} and $\Omega_{0}($ not $\Phi)$ in terms of D and E.

Express the unit-sample response in terms of complex exponentials:

$$
h[n]=r_{0}^{n}\left(\frac{1}{2} e^{j \Omega_{0} n+j \Phi}+\frac{1}{2} e^{-j \Omega_{0} n-j \Phi}\right) u[n]=\frac{1}{2} e^{j \Phi} r_{0}^{n} e^{j \Omega_{0} n} u[n]+\frac{1}{2} e^{-j \Phi} r_{0}^{n} e^{-j \Omega_{0} n} u[n]
$$

The poles have the form $z=r_{0} e^{j \Omega_{0}}$ and $z=r_{0} e^{-j \Omega_{0}}$. The characteristic equation is $z^{2}+D z+E=\left(z-r_{0} e^{j \Omega_{0}}\right)\left(z-r_{0} e^{-j \Omega_{0}}\right)=z^{2}-2 r_{0} \cos \Omega_{0}+r_{0}^{2}$. Thus $D=-2 r_{0} \cos \Omega_{0}$ and $E=r_{0}^{2}$. Solving, we find that

$$
\begin{aligned}
r_{0} & =\sqrt{E} \\
\Omega_{0} & =\cos ^{-1} \frac{-D}{2 r_{0}}=\cos ^{-1} \frac{-D}{2 \sqrt{E}}
\end{aligned}
$$

e. Determine

- the length of time required for the envelope r_{0}^{n} of $h[n]$ to diminish by a factor of e.
- the period of the oscillations (i.e., $\frac{2 \pi}{\Omega_{0}}$) in $h[n]$, and
- the number of periods of oscillation in $h[n]$ before it diminishes by a factor of e.

Express your results as functions of D and E only.

The time to diminish by a factor of e is $r_{0}^{n}=\frac{1}{e}$. Taking the \log of both sides yields $n \ln r_{0}=-1$ so that the time is

$$
-\frac{1}{\ln r_{0}}=-\frac{1}{\ln \sqrt{E}}
$$

The period is $\frac{2 \pi}{\Omega_{0}}$ which is

$$
\frac{2 \pi}{\cos ^{-1} \frac{-D}{2 \sqrt{E}}}
$$

The number of periods before the response diminishes by e is

$$
\frac{\frac{-1}{\ln r_{0}}}{\frac{2 \pi}{\cos ^{-1} \frac{-D}{2 \sqrt{E}}}}=\frac{\frac{-1}{\ln \sqrt{E}} \cos ^{-1} \frac{-D}{2 \sqrt{E}}}{2 \pi}
$$

f. Estimate the parameters in part e for a DT system with the following poles:

From the plot $\Omega_{0}=\tan ^{-1} \frac{0.149}{0.938} \approx 0.16$ radians and $r_{0}=\sqrt{0.149^{2}+0.938^{2}} \approx 0.95$.
The time to decay by a factor of e is $\frac{-1}{\ln 0.95} \approx 19.5$.
The period is $\frac{2 \pi}{\Omega_{0}}=\frac{2 \pi}{0.16} \approx 39.3$.
The number of cycles before decaying by e is $\frac{19.5}{39.3} \approx 0.5$

2. Matches

The following plots show pole-zero diagrams, impulse responses, Bode magnitude plots, and Bode angle plots for six causal CT LTI systems. Determine which corresponds to which and fill in the following table.

Pole-zero diagram 1 has a single pole at zero. The impulse response of a system with a single pole at zero is a unit step function (3). We evaluate the frequency response by considering frequencies along the $j \omega$ axis. As we move away from the pole at the origin the log-magnitude decays linearly (5). The phase is constant since the angle between the pole and any point along positive side of the $j \omega$ axis remains constant at $\pi / 2$. The angle of the frequency response is therefore $-\pi / 2$ (4).

Pole-zero diagram 4 has a single pole at at $s=-1$. The impulse response has the form $e^{s t} u(t)=e^{-t} u(t)(2)$. As we move along the $j \omega$ axis, we move away from the pole at the origin, and the log-magnitude will eventually decay linearly. Because the pole is not
exactly at the origin, this decay is not significant until $\omega=1$ (6). The phase starts at 0 , and eventually moves to $-\pi / 2$. Note that as we move farther up the $j \omega$ axis, this system behaves like the system of diagram 1 (2).
Pole-zero diagram 3 adds a zero at the origin. A zero at the origin corresponds to taking the derivative, so we take the impulse response of pole-zero diagram 4 (2) and take its derivative (4). When ω is small, the zero is dominant. As we move away from $\omega=0$, the effect of the zero diminishes and the log-magnitude increases linearly. For sufficiently large ω we are far enough that the zero and pole appear to cancel each other, and the magnitude becomes a constant (3). A zero at the origin means that we take the phase response of pole-zero diagram 4 (2) and add $\pi / 2$ to it (6).
Pole-zero diagram 2 contains complex conjugate poles

$$
H(s)=\frac{K}{\left(s+\sigma+j \omega_{d}\right)\left(s+\sigma-j \omega_{d}\right)}=\frac{j A}{s+\sigma+j \omega_{d}}-\frac{j A}{s+\sigma-j \omega_{d}} .
$$

The impulse response has the form

$$
h(t) \propto e^{-\sigma t}\left(e^{j \omega_{d} t}-e^{-j \omega_{d} t}\right) \propto e^{-\sigma t} \sin \omega_{d} t
$$

which is response (1). The magnitude response will eventually decay twice as fast as that of pole-zero diagram 4 (6). Since there are two poles, there will be a bump at around $\omega=1$ (2). At the origin, the angular contributions of the two poles cancel each other out, hence the angle is zero. As we move up the $j \omega$ axis, the angles add up to $-\pi$, with each pole contributing $-\pi / 2$ (3).
Pole-zero diagram 6 adds a zero at the origin, meaning that we take the derivative of the impulse response of pole-zero diagram 2 (1). The derivative ends up being the combination of a decaying $\cos (t)$ term minus a decaying $\sin (t)$ term (5). The zero at the origin adds a linearly increasing component to the magnitude function (4). It also adds $\pi / 2$ to the phase response everywhere (5).
Pole-zero diagram 5 has complex conjugate poles and zeros at the same frequency ω. The system function has the form

$$
H(s)=\frac{s^{2}-\frac{\omega_{0}}{Q} s+\omega_{0}^{2}}{s^{2}+\frac{\omega_{0}}{Q} s+\omega_{0}^{2}} .
$$

This denominator has the same form as pole-zero diagrams 2 and 6 , but has an additional power of s (corresponding to differentiation) in the numerator. This leads to a response of the form in (6). The symmetry of the poles and zeros means they cancel each other's effect on magnitude (1). The phase response at $\omega=0$ is zero, as the contributions cancel each other out. As we move past $\omega=1$ where the conjugates are located, the phase moves in the negative direction faster, but eventually settles back at 0 as we move farther and the contributions again cancel each other out (1).

	$h(t)$	Magnitude	Angle
PZ diagram 1:	3	5	4
PZ diagram 2:	1	2	3
PZ diagram 3:	4	3	6
PZ diagram 4:	2	6	2
PZ diagram 5:	6	1	1
PZ diagram 6:	5	4	5

Engineering Design Problems

3. Desired oscillations

The following feedback circuit was the basis of Hewlett and Packard's founding patent.

a. With $R=1 \mathrm{k} \Omega$ and $C=1 \mu \mathrm{~F}$, sketch the pole locations as the gain K varies from 0 to ∞, showing the scale for the real and imaginary axes. Find the K for which the system is barely stable and label your sketch with that information. What is the system's oscillation period for this K ?

The closed-loop gain is

$$
H(s)=\frac{\frac{K}{(1+s R C)^{3}}}{1+\frac{K}{(1+s R C)^{3}}}=\frac{K}{(1+s R C)^{3}+K}
$$

The denominator is zero if

$$
\begin{aligned}
& (1+s R C)^{3}=-K \\
& (1+s R C)=\sqrt[3]{-K} \\
& s=\frac{-1+\sqrt[3]{-K}}{R C}
\end{aligned}
$$

There are three cube roots of $-K:-\sqrt[3]{K}, \sqrt[3]{K} e^{j \pi / 3}$, and $\sqrt[3]{K} e^{-j \pi / 3}$ and three corresponding poles:

$$
s=\frac{-1-\sqrt[3]{K}}{R C}, \frac{-1+\sqrt[3]{K} e^{j \pi / 3}}{R C}, \text { and } \frac{-1+\sqrt[3]{K} e^{-j \pi / 3}}{R C}
$$

The point of marginal stability is where the root locus crosses the $j \omega$ axis. This occurs when the real part of $-1+\sqrt[3]{K} e^{j \pi / 3}$ equals zero:

$$
\sqrt[3]{K}=2
$$

so that $K=8$. The frequency of oscillation is $\omega=\frac{\sqrt{3}}{R C}$ so the period of oscillation is

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi R C}{\sqrt{3}} .
$$

For $R C=1 \mathrm{~ms}$ (as given), the period $T=3.63 \mathrm{~ms}$.
b. How do your results change if R is increased to $10 \mathrm{k} \Omega$?

Increasing R by a factor of 10 increases the period T by a factor of 10 , to $T=36.3 \mathrm{~ms}$. It has no effect of the critcal value of $K=8$.

4. Robotic steering

Design a steering controller for a car that is moving forward with constant velocity V.

You can control the steering-wheel angle $w(t)$, which causes the angle $\theta(t)$ of the car to change according to

$$
\frac{d \theta(t)}{d t}=\frac{V}{d} w(t)
$$

where d is a constant with dimensions of length. As the car moves, the transverse position $p(t)$ of the car changes according to

$$
\frac{d p(t)}{d t}=V \sin (\theta(t)) \approx V \theta(t)
$$

Consider three control schemes:
a. $w(t)=K e(t)$
b. $w(t)=K_{v} \dot{e}(t)$
c. $w(t)=K e(t)+K_{v} \dot{e}(t)$
where $e(t)$ represents the difference between the desired transverse position $x(t)=0$ and the current transverse position $p(t)$. Describe the behaviors that result for each control scheme when the car starts with a non-zero angle $\left(\theta(0)=\theta_{0}\right.$ and $\left.p(0)=0\right)$. Determine the most acceptable value(s) of K and/or K_{v} for each control scheme or explain why none are acceptable.

Part a. This system can be represented by the following block diagram:

We are given a set of initial conditions - $p(0)=0$ and $\theta(0)=\theta_{0}$ - and we are asked to characterize the response $p(t)$. Initial conditions are easy to take into account when a system is described by differential equations. However, feedback is easiest to analyze for systems expressed as operators or (equivalently) Laplace transforms. Therefore we first calculate the closed-loop system function,

$$
H(s) \frac{Y(s)}{X(s)}=\frac{K \frac{V}{d} V \frac{1}{s^{2}}}{1+K \frac{V}{d} V \frac{1}{s^{2}}}=\frac{K \frac{V^{2}}{d}}{s^{2}+K \frac{V^{2}}{d}}
$$

which has two poles: $\pm j \omega_{0}$ where $\omega_{0}=V \sqrt{\frac{K}{d}}$. We can convert the system function to a differential equation:

$$
\ddot{p}(t)+K \frac{V^{2}}{d} p(t)=K \frac{V^{2}}{d} x(t)
$$

and then find the solution when $x(t)=0$,

$$
\ddot{p}(t)+K \frac{V^{2}}{d} p(t)=0
$$

so that $p(t)=C \sin \omega_{0} t$ since $p(0)=0$.
From $p(t)$ we can calculate $\theta(t)=\dot{p}(t) / V=\frac{C}{V} \omega_{0} \cos \omega_{0} t$. From the initial condition $\theta(0)=\theta_{0}$, it follows that $C=V \theta_{0} / \omega_{0}$ and

$$
p(t)=\frac{V \theta_{0}}{\omega_{0}} \sin \omega_{0} t=\theta_{0} \sqrt{\frac{d}{K}} \sin V \sqrt{\frac{K}{d}} t
$$

for $t>0$.
If K is small, then the oscillations are slow, but they have a large amplitude. If K is large, then the oscillations are fast (and therefore uncomfortable for passengers), but the amplitude is small. While none of these behaviors are desireable, it would probably be best to increase K so that the amplitude of the oscillation is small enough so that the car stays in its lane.
Part b. The system can be represented by the following block diagram:

The closed-loop system function is

$$
H(s)=\frac{K_{v} s \frac{V^{2}}{d} \frac{1}{s^{2}}}{1+K_{v} s \frac{V^{2}}{d} \frac{1}{s^{2}}}=\frac{K_{v} s \frac{V^{2}}{d}}{s\left(s+K_{v} \frac{V^{2}}{d}\right)} .
$$

The closed-loop poles are at $s=0$ and $s=-\frac{K_{v}}{d} V^{2}$.
Since $p(0)=0$, the form of $p(t)$ is given by

$$
p(0)=C\left(1-e^{-\frac{K_{v}}{d} V^{2} t}\right)
$$

for $t>0$. We can find C by relating C to the initial value of $\theta(t)=\dot{p}(t) / V$. Since $\theta(0)=\theta_{0}, \dot{p}(0)=V \theta_{0}$. Therefore $C=\frac{1}{K_{v} \frac{v}{d}}$, so that

$$
p(t)=\frac{\theta_{0}}{K_{v} \frac{V}{d}}\left(1-e^{-\frac{K_{v}}{d} V^{2} t}\right)
$$

for $t>0$ as shown below.

We would like to make K_{v} large because large K_{v} leads to fast convergence. Large values of K_{v} also lead to smaller steady-state errors in $p(t)$.
There are no oscillations in $p(t)$ with the velocity sensor, which is an advantage over results with the position sensor in part a. However, there is now a steady-state error in $p(t)$, which is worse. Fortunately the steady-state error can be made small with large K_{v}.

Part c. The system can be represented by the following block diagram:

The closed-loop system function is

$$
H(s)=\frac{\left(K_{v} s+K\right) \frac{V^{2}}{d} \frac{1}{s^{2}}}{1+\left(K_{v} s+K\right) \frac{V^{2}}{d} \frac{1}{s^{2}}}=\frac{\left(K_{v} s+K\right) \frac{V^{2}}{d}}{s^{2}+\left(K_{v} s+K\right) \frac{V^{2}}{d}}=\frac{\left(K_{v} s+K\right) \frac{V^{2}}{d}}{s^{2}+\frac{1}{Q} s \omega_{0}+\omega_{0}^{2}}
$$

This second-order system has a resonant frequency $\omega_{0}=\sqrt{\frac{K}{d} V^{2}}$ and a quality factor $Q=\frac{K}{K_{v}} \frac{1}{\omega_{0}}$.
There is an enormous variety of acceptable solutions to this problem, since there are many values of K and K_{v} that can work. Here, we focus on one line of reasoning based on our normalization of second-order system in terms of Q and ω_{0}.
To avoid excessive oscillations, we would like Q to be small. Try $Q=1$. Then

$$
H(s)=\frac{\left(K_{v} s+K\right) \frac{V^{2}}{d}}{s^{2}+\omega_{0} s+\omega_{0}^{2}} .
$$

Then $p(t)$ has the form

$$
p(t)=C e^{-\omega_{0} t / 2} \sin \left(\frac{\sqrt{3}}{2} \omega_{0} t\right) .
$$

As before, we can use the intial condition of $\theta(0)=\theta_{0}$ to determine C. In general, $\theta(t)=\dot{p}(t) / V$ so $\dot{p}(0)=\theta_{0} V=C \sqrt{3} \omega_{0} / 2$. Therefore

$$
p(t)=\frac{2 V \theta_{0}}{\sqrt{3} \omega_{0}} e^{-\omega_{0} t / 2} \sin \left(\frac{\sqrt{3}}{2} \omega_{0} t\right) .
$$

Increasing Q would reduce the overshoot but slow the response. We could compensate for the slowing of the response by increasing ω_{0}.

Performance can be adjusted to be better than either part a or part b. By adjusting Q and ω_{0} we can get convergence of $p(t)$ to zero with minimum oscillation.

Although the steady-state value of the error is zero and the oscillation is minimized, there is still a transient behavior, which could momentarily move the car into the other lane!

MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

