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Last Time: Fourier Series
 

Representing periodic signals as sums of sinusoids. 

→ new representations for systems as filters. 

Today: generalize for aperiodic signals. 
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Fourier Transform
 

An aperiodic signal can be thought of as periodic with infinite period. 

Let x(t) represent an aperiodic signal. 

x(t)

t−S S

∞0 
“Periodic extension”: xT (t) = x(t + kT ) 

k=−∞ 

xT (t)

t−S S T

Then x(t) = lim xT (t). 
T →∞ 3



2 sinωS
ω

ω0 = 2π/T

ω = kω0 = k
2π
T

Tak

k
ω

Fourier Transform
 

Represent xT (t) by its Fourier series. 

xT (t)

t−S S T

ak = 
1 
T

 T/2 

−T/2 
xT (t)e −j 2π 

T ktdt = 
1 
T

 S 

−S 
e −j 2π 

T ktdt = 
sin 2πkS 

T 
πk 

= 
2 
T 

sin ωS 
ω 
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Fourier Transform
 

Doubling period doubles # of harmonics in given frequency interval. 

xT (t)

t−S S T

ak = 
1 
T 

T/2 

−T/2 
xT (t)e −j 2π 

T ktdt = 
1 
T 

S 

−S 
e −j 2π 

T ktdt = 
sin 2πkS 

T 
πk 

= 
2 
T 

sin ωS 
ω 
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Fourier Transform
 

As T → ∞, discrete harmonic amplitudes → a continuum E(ω). 

xT (t)

t−S S T

ak = 
1 
T 

T/2 

−T/2 
xT (t)e −j 2π 

T ktdt = 
1 
T 

S 

−S 
e −j 2π 

T ktdt = 
sin 2πkS 

T 
πk 

= 
2 
T 

sin ωS 
ω 

lim 
T →∞ 

T ak = lim 
T →∞ 

T /2 

−T /2 
x(t)e −jωtdt = 

2 
ω 

sin ωS = E(ω) 
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Fourier Transform
 

As T → ∞, synthesis sum → integral. 

xT (t)

t−S S T

2 sinωS
ω

ω0 = 2π/T

ω = kω0 = k
2π
T

Tak

k
ω

lim 
T →∞ 

T ak = lim 
T →∞ 

T /2 

−T /2 
x(t)e −jωtdt = 

2 
ω 

sin ωS = E(ω) 

∞ 1 
∞0 0 ω0 1
 ∞2π 

x(t) = E(ω)
 e
j T kt =
 2π
 
E(ω)e
jωt → E(ω)e
jωtdω2π
 −∞T 

k=−∞ k=−∞ 
ak 
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Fourier Transform
 

Replacing E(ω) by X(jω) yields the Fourier transform relations. 

E(ω) = X(jω) 

Fourier transform 

∞ 
−jωtdtX(jω)= x(t)e (“analysis” equation) 

−∞ 

1 ∞ 
jωtdωx(t)= X(jω)e (“synthesis” equation) 2π −∞ 

Form is similar to that of Fourier series 

→ provides alternate view of signal. 
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Relation between Fourier and Laplace Transforms
 

If the Laplace transform of a signal exists and if the ROC includes the 

jω axis, then the Fourier transform is equal to the Laplace transform 

evaluated on the jω axis. 

Laplace transform: 
∞ 

X(s) = x(t)e −stdt 
−∞ 

Fourier transform: 
∞ 

X(jω) = x(t)e −jωtdt = X(s)|s=jω 
−∞ 
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Relation between Fourier and Laplace Transforms
 

Fourier transform “inherits” properties of Laplace transform.
 

Property x(t) X(s) X(jω)
 

Linearity ax1(t) + bx2(t) aX1(s) + bX2(s) aX1(jω) + bX2(jω) 

−st0 X(s) −jωt0 X(jω)Time shift x(t − t0) e e     1 s 1 jω 
Time scale x(at) X X

|a| a |a| a
dx(t)

Differentiation sX(s) jωX(jω)
dt 

d 1 d 
Multiply by t tx(t) − X(s) − X(jω)

ds j dω 

Convolution x1(t) ∗ x2(t) X1(s) × X2(s) X1(jω) × X2(jω) 
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Relation between Fourier and Laplace Transforms
 

There are also important differences. 

−t

x(t)

t

Compare Fourier and Laplace transforms of x(t) = e u(t). 

Laplace transform
 
∞ ∞ 

−t −(s+1)tdt = 1 
X(s) = e u(t)e −stdt = e ; Re(s) > −1 

−∞ 0 1 + s 

a complex-valued function of complex domain. 

Fourier transform 
∞ ∞ 

−t −jωtdt = −(jω+1)tdt = 1 
X(jω) = e u(t)e e 

−∞ 0 1 + jω 

a complex-valued function of real domain.
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Laplace Transform
 

The Laplace transform maps a function of time t to a complex-valued
 

function of complex-valued domain s. 

x(t)

t

-1 0 1
-101

0

10

Real(s)
Imaginary(s)

M
ag

ni
tu

de

|X(s)| =
∣∣∣∣ 1
1 + s

∣∣∣∣
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Fourier Transform
 

The Fourier transform maps a function of time t to a complex-valued 

function of real-valued domain ω. 

x(t)

t

0 1

∣∣X(j )
∣∣ =

∣∣∣∣ 1
1 + jω

∣∣∣∣ω

ω

Frequency plots provide intuition that is difficult to otherwise obtain. 
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Check Yourself
 

Find the Fourier transform of the following square pulse. 

−1 1

x1(t)

1

t

1. X1(jω) = 
1 
ω

 
e ω − e −ω 2. X1(jω) = 

1 
ω 

sin ω 

3. X1(jω) = 
2 
ω

 
e ω − e −ω 4. X1(jω) = 

2 
ω 

sin ω 

5. none of the above 
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Fourier Transform
 

Compare the Laplace and Fourier transforms of a square pulse.
 

−1 1

x1(t)

1

t

Laplace transform:
 

X1(s) = 
1 

e
 
−ste−stdt = 
−s−1 

    
1 

=
 
1
 s − e −s [function of s = σ + jω]
e
 

−1 s 

Fourier transform
     
11 −jωt e−jωtdt = 
2 sin ω
 

X1(jω) = [function of ω]
=
e
 
−jω
 ω
−1 −1 
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Check Yourself
 

Find the Fourier transform of the following square pulse. 4 

−1 1

x1(t)

1

t

1. X1(jω) = 
1 
ω 

e ω − e −ω 2. X1(jω) = 
1 
ω 

sin ω 

3. X1(jω) = 
2 
ω 

e ω − e −ω 4. X1(jω) = 
2 
ω 

sin ω 

5. none of the above 
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Laplace Transform
 

Laplace transform: complex-valued function of complex domain. 

−1 1

x1(t)

1

t

-5

0

5

-5

0

5
0

10

20

30

|X(s)| =
∣∣∣∣1s (es − e−s)

∣∣∣∣
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Fourier Transform
 

The Fourier transform is a function of real domain: frequency ω. 

Time representation: 

−1 1

x1(t)

1

t

Frequency representation: 

2

π

X1(jω) = 2 sinω
ω

ω
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Check Yourself
 

Signal x2(t) and its Fourier transform X2(jω) are shown below. 

−2 2

x2(t)

1

t

b

ω0

X2(jω)

ω

Which is true? 

1. b = 2 and ω0 = π/2 

2. b = 2 and ω0 = 2π 

3. b = 4 and ω0 = π/2 

4. b = 4 and ω0 = 2π 

5. none of the above 
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Check Yourself
 

Find the Fourier transform. 

22 −jωt e 2 sin 2ω 4 sin 2ω−jωtdt = = =X2(jω) = 
−2 

e 
−jω −2 ω 2ω 

4

π/2
ω

20
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Check Yourself
 

Signal x2(t) and its Fourier transform X2(jω) are shown below. 

−2 2

x2(t)

1

t

b

ω0

X2(jω)

ω

Which is true? 3 

1. b = 2 and ω0 = π/2 

2. b = 2 and ω0 = 2π 

3. b = 4 and ω0 = π/2 

4. b = 4 and ω0 = 2π 

5. none of the above 
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Fourier Transforms
 

Stretching time compresses frequency. 

−1 1

x1(t)

1

t

2

π

X1(jω) = 2 sinω
ω

ω

−2 2

x2(t)

1

t

4

π/2

X2(jω) = 4 sin 2ω
2ω

ω
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Check Yourself
 

Stretching time compresses frequency. 

Find a general scaling rule. 

Let x2(t) = x1(at). 

If time is stretched in going from x1 to x2, is a > 1 or a < 1? 
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Check Yourself
 

Stretching time compresses frequency.
 

Find a general scaling rule.
 

Let x2(t) = x1(at).
 

If time is stretched in going from x1 to x2, is a > 1 or a < 1?
 

x2(2) = x1(1)
 

x2(t) = x1(at)
 

Therefore a = 1/2, or more generally, a < 1. 
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Check Yourself
 

Stretching time compresses frequency. 

Find a general scaling rule. 

Let x2(t) = x1(at). 

If time is stretched in going from x1 to x2, is a > 1 or a < 1? 

a < 1 

25



  

   

  

Fourier Transforms
 

Find a general scaling rule. 

Let x2(t) = x1(at). 
∞ ∞ 

−jωtdt = −jωtdtX2(jω) = x2(t)e x1(at)e 
−∞ −∞ 

Let τ = at (a > 0). 
∞ 

−jωτ/a 1 1 jω 
X2(jω) = x1(τ)e dτ = X1 

a a a−∞ 

If a < 0 the sign of dτ would change along with the limits of integra

tion. In general, 
1 jω 

x1(at) ↔ X1 . 
|a| a 

If time is stretched (a < 1) then frequency is compressed and ampli

tude increases (preserving area). 
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Moments
 

The value of X(jω) at ω = 0 is the integral of x(t) over time t. 

∞ ∞ ∞ 
−jωtdt =X(jω)|ω=0 = x(t)e x(t)ej0tdt = x(t) dt 

−∞ −∞ −∞ 

−1 1

x1(t)

1

t

area = 2 2

π

X1(jω) = 2 sinω
ω

ω
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Moments
 

The value of x(0) is the integral of X(jω) divided by 2π. 

1 ∞ 1 ∞ 
jωtdω =x(0) = X(jω) e X(jω) dω2π −∞ 2π −∞ 

−1 1

x1(t)

1

t
++

−− ++ −−

2

π

X1(jω) = 2 sinω
ω

ω

area

2π = 1
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Moments
 

The value of x(0) is the integral of X(jω) divided by 2π. 

1 ∞ 1 ∞ 
jωtdω =x(0) = X(jω) e X(jω) dω2π −∞ 2π −∞ 

−1 1

x1(t)

1

t
++

−− ++ −−

2

π

X1(jω) = 2 sinω
ω

ω

area

2π = 1

2

π
ω

equal areas !
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Stretching to the Limit
 

Stretching time compresses frequency and increases amplitude 

(preserving area). 

−1 1

x1(t)

1

t

2

π

X1(jω) = 2 sinω
ω

ω

−2 2

1

t

4

π
ω

1

t

2π

ω

New way to think about an impulse! 
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Fourier Transform
 

One of the most useful features of the Fourier transform (and Fourier 

series) is the simple “inverse” Fourier transform. 

∞ 
−jωtdtX(jω)= x(t)e (Fourier transform) 

−∞ 

1 ∞ 
jωtdωx(t)= X(jω)e (“inverse” Fourier transform) 2π −∞ 
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Inverse Fourier Transform
 

sin ω0t = 
πt −ω0 

Find the impulse reponse of an “ideal” low pass filter. 

−ω0 ω0

H(jω)

1

ω

h(t) = 
1 

2π 

∞ 

−∞ 
H(jω)ejωtdω = 

1 
2π 

ω0 

−ω0 

ejωtdω = 
1 

2π 
ejωt 

jt 

ω0 

ω0/π

π

ω0

h(t)

t

This result is not so easily obtained without inverse relation. 
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Fourier Transform
 

The Fourier transform and its inverse have very similar forms.
 

∞ 
−jωtdtX(jω)= x(t)e (Fourier transform) 

−∞ 

1 ∞ 
jωtdωx(t)= X(jω)e (“inverse” Fourier transform) 2π −∞ 

Convert one to the other by 

• t → ω 

• ω → −t 

• scale by 2π 
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Duality
 

The Fourier transform and its inverse have very similar forms.
 

∞ 
−jωtdtX(jω) = x(t)e 

−∞
 
1 ∞
 

jωtdωx(t) = X(jω)e2π −∞ 

Two differences: 

• minus sign: flips time axis (or equivalently, frequency axis) 

• divide by 2π (or multiply in the other direction) 

x1(t) = f(t)↔ X1(jω) = g(ω)

x2(t) = g(t)↔ X2(jω) = 2πf(−ω)

ω → t t→ ω ; flip ; ×2π
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Duality
 

Using duality to find new transform pairs. 

x1(t) = f(t)↔ X1(jω) = g(ω)

x2(t) = g(t)↔ X2(jω) = 2πf(−ω)

ω → t t→ ω ; flip ; ×2π

f(t) = δ(t)

t

1

g(ω) = 1

ω
↔

g(t) = 1

t

2πf(−ω) = 2πδ(ω)

ω

2π↔

↓

The function g(t) = 1 does not have a Laplace transform! 
35



More Impulses
 

Fourier transform of delayed impulse: δ(t − T ) ↔ e−jωT . 

x(t) = δ(t− T )

t
T

1

X(jω) =
∫∞
−∞ δ(t− T )e−jωtdt = e−jωT

∣∣X(jω)
∣∣ = 1

ω

1

∠X(jω) = −ωT

ω
−T
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Eternal Sinusoids
 

Using duality to find the Fourier transform of an eternal sinusoid.
 

δ(t− T )

e−jtT

e−jω0t

↔

↔

↔

e−jωT

2πδ(ω + T )

2πδ(ω + ω0)
T → ω0 :

ω → t t→ ω ; flip ; ×2π

∞

k=−∞ 

0 
ake

2 CTFS
πj kt x(t) = x(t + T ) =
 {ak}T
←→
 

2π
 
k
 

2 CTFT
πj kt x(t) = x(t + T ) =
 2πakδ ω − 
0∞ ∞

k=−∞ k=−∞ 

0 
ake T

←→
 T
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· · ·· · ·

x(t) =
∞∑

k=−∞
xp(t− kT )

t
0 T

· · ·· · ·

ak

k

· · ·· · ·

X(jω) =
∞∑

k=−∞
2π ak δ(ω − k

2π
T

)

ω
0 2π

T

Relation between Fourier Transform and Fourier Series 

Each term in the Fourier series is replaced by an impulse. 
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Summary
 

Fourier transform generalizes ideas from Fourier series to aperiodic 

signals. 

Fourier transform is strikingly similar to Laplace transform 

• similar properties (linearity, differentiation, ...) 

• but has a simple inverse (great for computation!) 

Next time – applications (demos) of Fourier transforms 
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