6.003: Signals and Systems

Fourier Transform

Last Time: Fourier Series

Representing periodic signals as sums of sinusoids.
\rightarrow new representations for systems as filters.

Today: generalize for aperiodic signals.

Fourier Transform

An aperiodic signal can be thought of as periodic with infinite period.

Let $x(t)$ represent an aperiodic signal.

"Periodic extension" : $x_{T}(t)=\sum_{k=-\infty}^{\infty} x(t+k T)$

Then $x(t)=\lim _{T \rightarrow \infty} x_{T}(t)$.

Fourier Transform

Represent $x_{T}(t)$ by its Fourier series.

Fourier Transform

Doubling period doubles \# of harmonics in given frequency interval.

Fourier Transform

As $T \rightarrow \infty$, discrete harmonic amplitudes \rightarrow a continuum $E(\omega)$.

$\lim _{T \rightarrow \infty} T a_{k}=\lim _{T \rightarrow \infty} \int_{-T / 2}^{T / 2} x(t) e^{-j \omega t} d t=\frac{2}{\omega} \sin \omega S=E(\omega)$

Fourier Transform

As $T \rightarrow \infty$, synthesis sum \rightarrow integral.

Fourier Transform

Replacing $E(\omega)$ by $X(j \omega)$ yields the Fourier transform relations.

$$
E(\omega)=X(j \omega)
$$

Fourier transform

$$
\begin{aligned}
X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t & \text { ("analysis" equation) } \\
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega & \text { ("synthesis" equation) }
\end{aligned}
$$

Form is similar to that of Fourier series
\rightarrow provides alternate view of signal.

Relation between Fourier and Laplace Transforms

If the Laplace transform of a signal exists and if the ROC includes the $j \omega$ axis, then the Fourier transform is equal to the Laplace transform evaluated on the $j \omega$ axis.

Laplace transform:

$$
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t
$$

Fourier transform:

$$
X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\left.X(s)\right|_{s=j \omega}
$$

Relation between Fourier and Laplace Transforms

Fourier transform "inherits" properties of Laplace transform.

Property	$x(t)$	$X(s)$	$X(j \omega)$
Linearity	$a x_{1}(t)+b x_{2}(t)$	$a X_{1}(s)+b X_{2}(s)$	$a X_{1}(j \omega)+b X_{2}(j \omega)$
Time shift	$x\left(t-t_{0}\right)$	$e^{-s t_{0}} X(s)$	$e^{-j \omega t_{0}} X(j \omega)$
Time scale	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{s}{a}\right)$	$\frac{1}{\|a\|} X\left(\frac{j \omega}{a}\right)$
Differentiation	$\frac{d x(t)}{d t}$	$s X(s)$	$j \omega X(j \omega)$
Multiply by t	$t x(t)$	$-\frac{d}{d s} X(s)$	$-\frac{1}{j} \frac{d}{d \omega} X(j \omega)$
Convolution	$x_{1}(t) * x_{2}(t)$	$X_{1}(s) \times X_{2}(s)$	$X_{1}(j \omega) \times X_{2}(j \omega)$

Relation between Fourier and Laplace Transforms

There are also important differences.
Compare Fourier and Laplace transforms of $x(t)=e^{-t} u(t)$.

Laplace transform

$$
X(s)=\int_{-\infty}^{\infty} e^{-t} u(t) e^{-s t} d t=\int_{0}^{\infty} e^{-(s+1) t} d t=\frac{1}{1+s} ; \operatorname{Re}(s)>-1
$$

a complex-valued function of complex domain.

Fourier transform

$$
X(j \omega)=\int_{-\infty}^{\infty} e^{-t} u(t) e^{-j \omega t} d t=\int_{0}^{\infty} e^{-(j \omega+1) t} d t=\frac{1}{1+j \omega}
$$

a complex-valued function of real domain.

Laplace Transform

The Laplace transform maps a function of time t to a complex-valued function of complex-valued domain s.

Fourier Transform

The Fourier transform maps a function of time t to a complex-valued function of real-valued domain ω.

Frequency plots provide intuition that is difficult to otherwise obtain.

Check Yourself

Find the Fourier transform of the following square pulse.

1. $X_{1}(j \omega)=\frac{1}{\omega}\left(e^{\omega}-e^{-\omega}\right)$ 2. $X_{1}(j \omega)=\frac{1}{\omega} \sin \omega$
2. $X_{1}(j \omega)=\frac{2}{\omega}\left(e^{\omega}-e^{-\omega}\right)$ 4. $X_{1}(j \omega)=\frac{2}{\omega} \sin \omega$
3. none of the above

Fourier Transform

Compare the Laplace and Fourier transforms of a square pulse.

Laplace transform:

$$
X_{1}(s)=\int_{-1}^{1} e^{-s t} d t=\left.\frac{e^{-s t}}{-s}\right|_{-1} ^{1}=\frac{1}{s} e^{s}-e^{-s} \quad[\text { function of } s=\sigma+j \omega]
$$

Fourier transform

$$
X_{1}(j \omega)=\int_{-1}^{1} e^{-j \omega t} d t=\left.\frac{e^{-j \omega t}}{-j \omega}\right|_{-1} ^{1}=\frac{2 \sin \omega}{\omega} \quad \text { [function of } \omega \text {] }
$$

Check Yourself

Find the Fourier transform of the following square pulse. 4

1. $X_{1}(j \omega)=\frac{1}{\omega}\left(e^{\omega}-e^{-\omega}\right) \quad$ 2. $X_{1}(j \omega)=\frac{1}{\omega} \sin \omega$
2. $X_{1}(j \omega)=\frac{2}{\omega}\left(e^{\omega}-e^{-\omega}\right)$ 4. $X_{1}(j \omega)=\frac{2}{\omega} \sin \omega$
3. none of the above

Laplace Transform

Laplace transform: complex-valued function of complex domain.

$$
|X(s)|=\left|\frac{1}{s}\left(e^{s}-e^{-s}\right)\right|
$$

Fourier Transform

The Fourier transform is a function of real domain: frequency ω.
Time representation:

Frequency representation:

$$
X_{1}(j \omega)=\frac{2 \sin \omega}{\omega}
$$

Check Yourself

Signal $x_{2}(t)$ and its Fourier transform $X_{2}(j \omega)$ are shown below.

Which is true?

1. $b=2$ and $\omega_{0}=\pi / 2$
2. $b=2$ and $\omega_{0}=2 \pi$
3. $b=4$ and $\omega_{0}=\pi / 2$
4. $b=4$ and $\omega_{0}=2 \pi$
5. none of the above

Check Yourself

Find the Fourier transform.

$$
X_{2}(j \omega)=\int_{-2}^{2} e^{-j \omega t} d t=\left.\frac{e^{-j \omega t}}{-j \omega}\right|_{-2} ^{2}=\frac{2 \sin 2 \omega}{\omega}=\frac{4 \sin 2 \omega}{2 \omega}
$$

Check Yourself

Signal $x_{2}(t)$ and its Fourier transform $X_{2}(j \omega)$ are shown below.

Which is true? 3

1. $b=2$ and $\omega_{0}=\pi / 2$
2. $b=2$ and $\omega_{0}=2 \pi$
3. $b=4$ and $\omega_{0}=\pi / 2$
4. $b=4$ and $\omega_{0}=2 \pi$
5. none of the above

Fourier Transforms

Stretching time compresses frequency.

$$
X_{2}(j \omega)=\frac{4 \sin 2 \omega}{2 \omega}
$$

Check Yourself

Stretching time compresses frequency.

Find a general scaling rule.
Let $x_{2}(t)=x_{1}(a t)$.

If time is stretched in going from x_{1} to x_{2}, is $a>1$ or $a<1$?

Check Yourself

Stretching time compresses frequency.
Find a general scaling rule.
Let $x_{2}(t)=x_{1}(a t)$.
If time is stretched in going from x_{1} to x_{2}, is $a>1$ or $a<1$?

$$
\begin{aligned}
& x_{2}(2)=x_{1}(1) \\
& x_{2}(t)=x_{1}(a t)
\end{aligned}
$$

Therefore $a=1 / 2$, or more generally, $a<1$.

Check Yourself

Stretching time compresses frequency.

Find a general scaling rule.
Let $x_{2}(t)=x_{1}(a t)$.

If time is stretched in going from x_{1} to x_{2}, is $a>1$ or $a<1$?
$a<1$

Fourier Transforms

Find a general scaling rule.

Let $x_{2}(t)=x_{1}(a t)$.

$$
X_{2}(j \omega)=\int_{-\infty}^{\infty} x_{2}(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} x_{1}(a t) e^{-j \omega t} d t
$$

$$
\begin{aligned}
& \text { Let } \tau=a t(a>0) . \\
& \qquad X_{2}(j \omega)=\int_{-\infty}^{\infty} x_{1}(\tau) e^{-j \omega \tau / a} \frac{1}{a} d \tau=\frac{1}{a} X_{1}\left(\frac{j \omega}{a}\right)
\end{aligned}
$$

If $a<0$ the sign of $d \tau$ would change along with the limits of integration. In general,

$$
x_{1}(a t) \leftrightarrow \frac{1}{|a|} X_{1}\left(\frac{j \omega}{a}\right) .
$$

If time is stretched ($a<1$) then frequency is compressed and amplitude increases (preserving area).

Moments

The value of $X(j \omega)$ at $\omega=0$ is the integral of $x(t)$ over time t.

$$
\left.X(j \omega)\right|_{\omega=0}=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t=\int_{-\infty}^{\infty} x(t) e^{j 0 t} d t=\int_{-\infty}^{\infty} x(t) d t
$$

Moments

The value of $x(0)$ is the integral of $X(j \omega)$ divided by 2π.

$$
x(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) d \omega
$$

Moments

The value of $x(0)$ is the integral of $X(j \omega)$ divided by 2π.

$$
x(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) d \omega
$$

Stretching to the Limit

Stretching time compresses frequency and increases amplitude (preserving area).

New way to think about an impulse!

Fourier Transform

One of the most useful features of the Fourier transform (and Fourier series) is the simple "inverse" Fourier transform.

$$
\begin{array}{rlr}
X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t & \text { (Fourier transform) } \\
x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega & \text { ("inverse" Fourier transform) }
\end{array}
$$

Inverse Fourier Transform

Find the impulse reponse of an "ideal" low pass filter.

$$
h(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(j \omega) e^{j \omega t} d \omega=\frac{1}{-\omega_{0}} \int_{-\omega_{0}}^{\omega_{0}} e^{j \omega t} d \omega=\left.\frac{1}{2 \pi} \frac{e^{j \omega t}}{j t}\right|_{-\omega_{0}} ^{\omega_{0}}=\frac{\sin \omega_{0} t}{\pi t}
$$

This result is not so easily obtained without inverse relation.

Fourier Transform

The Fourier transform and its inverse have very similar forms.

$$
\begin{aligned}
X(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t & & \text { (Fourier transform) } \\
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega & & \text { ("inverse" Fourier transform) }
\end{aligned}
$$

Convert one to the other by

- $t \rightarrow \omega$
- $\omega \rightarrow-t$
- scale by 2π

Duality

The Fourier transform and its inverse have very similar forms.

$$
\begin{aligned}
& X(j \omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \\
& x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega
\end{aligned}
$$

Two differences:

- minus sign: flips time axis (or equivalently, frequency axis)
- divide by 2π (or multiply in the other direction)

$$
\begin{aligned}
& x_{1}(t)=f(t) \leftrightarrow X_{1}(j \omega)=g(\omega) \\
& \omega \rightarrow t \rightarrow \omega ; \text { flip ; } \times 2 \pi \\
& x_{2}(t)=g(t) \leftrightarrow X_{2}(j \omega)=2 \pi f(-\omega)
\end{aligned}
$$

Duality

Using duality to find new transform pairs.

The function $g(t)=1$ does not have a Laplace transform!

More Impulses

Fourier transform of delayed impulse: $\delta(t-T) \leftrightarrow e^{-j \omega T}$.

$$
x(t)=\delta(t-T)
$$

$$
X(j \omega)=\int_{-\infty}^{\infty} \delta(t-T) e^{-j \omega t} d t=e^{-j \omega T}
$$

$$
|X(j \omega)|=1
$$

$$
\angle X(j \omega)=-\omega T
$$

Eternal Sinusoids

Using duality to find the Fourier transform of an eternal sinusoid.

$$
\begin{aligned}
& \delta(t-T) \quad \leftrightarrow \quad e^{-j \omega T} \\
& \omega \rightarrow t \xrightarrow{\longrightarrow} t \rightarrow \omega \text {; flip ; } \times 2 \pi \\
& e^{-j t T} \quad \leftrightarrow \quad 2 \pi \delta(\omega+T) \\
& T \rightarrow \omega_{0}: \\
& e^{-j \omega_{0} t} \quad \leftrightarrow \quad 2 \pi \delta\left(\omega+\omega_{0}\right) \\
& \begin{array}{lcll}
x(t)=x(t+T)=\sum_{k=-\infty}^{\infty} a_{k} e^{j \frac{2 \pi}{T} k t} & \text { CTFS } & \left\{a_{k}\right\} \\
\longleftrightarrow & \longleftrightarrow & \\
x(t)=x(t+T)=\sum_{k=-\infty}^{\infty} a_{k} e^{j \frac{2 \pi}{T} k t} & \text { CTFT } & \longleftrightarrow & \sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta \\
& \omega-\frac{2 \pi}{T} k
\end{array}
\end{aligned}
$$

Relation between Fourier Transform and Fourier Series

Each term in the Fourier series is replaced by an impulse.

$$
x(t)=\sum_{k=-\infty}^{\infty} x_{p}(t-k T)
$$

Summary

Fourier transform generalizes ideas from Fourier series to aperiodic signals.

Fourier transform is strikingly similar to Laplace transform

- similar properties (linearity, differentiation, ...)
- but has a simple inverse (great for computation!)

Next time - applications (demos) of Fourier transforms

MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

