6.003: Signals and Systems

DT Fourier Representations

Mid-term Examination \#3

Wednesday, November 16, 7:30-9:30pm,
No recitations on the day of the exam.
Coverage: Lectures 1-18
Recitations 1-16
Homeworks 1-10
Homework 10 will not be collected or graded.
Solutions will be posted.
Closed book: 3 pages of notes ($8 \frac{1}{2}$

Review: DT Frequency Response

The frequency response of a DT LTI system is the value of the system function evaluated on the unit circle.

$$
\begin{aligned}
& \cos (\Omega n) \longrightarrow H(z) \longrightarrow\left|H\left(e^{j \Omega}\right)\right| \cos \left(\Omega n+\angle H\left(e^{j \Omega}\right)\right) \\
& H\left(e^{j \Omega}\right)=\left.H(z)\right|_{z=e^{j \Omega}}
\end{aligned}
$$

Comparision of CT and DT Frequency Responses

CT frequency response: $H(s)$ on the imaginary axis, i.e., $s=j \omega$. DT frequency response: $H(z)$ on the unit circle, i.e., $z=e^{j \Omega}$.

Check Yourself

A system $H(z)=\frac{1-a z}{z-a}$ has the following pole-zero diagram.

Classify this system as one of the following filter types.

1. high pass
2. low pass
3. band pass
4. all pass
5. band stop
0 . none of the above

Check Yourself

Classify the system ...

$$
H(z)=\frac{1-a z}{z-a}
$$

Find the frequency response:

$$
H\left(e^{j \Omega}\right)=\frac{1-a e^{j \Omega}}{e^{j \Omega}-a}=e^{j \Omega} \frac{e^{-j \Omega}-a}{e^{j \Omega}-a} \leftarrow \text { complex }
$$

Because complex conjugates have equal magnitudes, $\left|H\left(e^{j \Omega}\right)\right|=1$.
\rightarrow all-pass filter

Check Yourself

A system $H(z)=\frac{1-a z}{z-a}$ has the following pole-zero diagram.

Classify this system as one of the following filter types. 4

1. high pass
2. low pass
3. band pass
4. all pass
5. band stop
0 . none of the above

Effects of Phase

$$
x[n] \longrightarrow H(z)=\frac{1-a z}{z-a} \quad y[n]
$$

Effects of Phase

$$
x[n] \longrightarrow H(z)=\frac{1-a z}{z-a} \longrightarrow y[n]
$$

$$
x[n]
$$

Effects of Phase

$$
x[n] \longrightarrow H(z)=\frac{1-a z}{z-a} \longrightarrow y[n]
$$

$$
x[n] \quad y[n]
$$

http://public.research.att.com/~ttsweb/tts/demo.php

Effects of Phase

$$
x[n] \longrightarrow H(z)=\frac{1-a z}{z-a} \longrightarrow y[n]
$$

$x[n]$

$$
\begin{aligned}
& y[n]
\end{aligned}
$$

artificial speech synthesized by Robert Donovan

Effects of Phase

$$
x[n] \rightarrow ? ? ? \rightarrow y[n]=x[-n]
$$

$$
x[n]
$$

$$
x[-n]
$$

artificial speech synthesized by Robert Donovan

Effects of Phase

$$
x[n] \rightarrow ? ? ? \longrightarrow y[n]=x[-n]
$$

$$
x[n]
$$

$$
x[-n]
$$

How are the phases of X and Y related?

Effects of Phase

$x[n]$
 $x[-n]$

How are the phases of X and Y related?

$$
\begin{aligned}
a_{k} & =\sum_{n} x[n] e^{-j k \Omega_{0} n} \\
b_{k} & =\sum_{n} x[-n] e^{-j k \Omega_{0} n}=\sum_{m} x[m] e^{j k \Omega_{0} m}=a_{-k}
\end{aligned}
$$

Flipping $x[n]$ about $n=0$ flips a_{k} about $k=0$.
Because $x[n]$ is real-valued, a_{k} is conjugate symmetric: $a_{-k}=a_{k}^{*}$.

$$
b_{k}=a_{-k}=a_{k}^{*}=\left|a_{k}\right| e^{-j \angle a_{k}}
$$

The angles are negated at all frequencies.

Review: Periodicity

DT frequency responses are periodic functions of Ω, with period 2π.

If $\Omega_{2}=\Omega_{1}+2 \pi k$ where k is an integer then

$$
H\left(e^{j \Omega_{2}}\right)=H\left(e^{j\left(\Omega_{1}+2 \pi k\right)}\right)=H\left(e^{j \Omega_{1}} e^{j 2 \pi k}\right)=H\left(e^{j \Omega_{1}}\right)
$$

The periodicity of $H\left(e^{j \Omega}\right)$ results because $H\left(e^{j \Omega}\right)$ is a function of $e^{j \Omega}$, which is itself periodic in Ω. Thus DT complex exponentials have many "aliases."

$$
e^{j \Omega_{2}}=e^{j\left(\Omega_{1}+2 \pi k\right)}=e^{j \Omega_{1}} e^{j 2 \pi k}=e^{j \Omega_{1}}
$$

Because of this aliasing, there is a "highest" DT frequency: $\Omega=\pi$.

Review: Periodic Sinusoids

There are (only) N distinct complex exponentials with period N.
(There were an infinite number in CT!)

If $y[n]=e^{j \Omega n}$ is periodic in N then

$$
y[n]=e^{j \Omega n}=y[n+N]=e^{j \Omega(n+N)}=e^{j \Omega n} e^{j \Omega N}
$$

and $e^{j \Omega N}$ must be 1 , and $e^{j \Omega}$ must be one of the $N^{t h}$ roots of 1 .
Example: $N=8$

Review: DT Fourier Series

DT Fourier series represent DT signals in terms of the amplitudes and phases of harmonic components.

DT Fourier Series

$$
a_{k}=a_{k+N}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j k \Omega_{0} n} \quad ; \Omega_{0}=\frac{2 \pi}{N} \quad \text { ("analysis" equation) }
$$

$$
x[n]=x[n+N]=\sum_{k=<N>} a_{k} e^{j k \Omega_{0} n}
$$

("synthesis" equation)

DT Fourier Series

DT Fourier series have simple matrix interpretations.

$$
\begin{aligned}
& x[n]=x[n+4]=\sum_{k=<4>} a_{k} e^{j k \Omega_{0} n}=\sum_{k=<4>} a_{k} e^{j k \frac{2 \pi}{4} n}=\sum_{k=<4>} a_{k} j^{k n} \\
& {\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3]
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]} \\
& a_{k}=a_{k+4}=\frac{1}{4} \sum_{n=<4>} x[n] e^{-j k \Omega_{0} n}=\frac{1}{4} \sum_{n=<4>} e^{-j k \frac{2 \pi}{N} n}=\frac{1}{4} \sum_{n=<4>} x[n] j^{-k n} \\
& {\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3]
\end{array}\right]}
\end{aligned}
$$

These matrices are inverses of each other.

Scaling

DT Fourier series are important computational tools.
However, the DT Fourier series do not scale well with the length N.

$$
\begin{aligned}
& a_{k}=a_{k+2}=\frac{1}{2} \sum_{n=<2>} x[n] e^{-j k \Omega_{0} n}=\frac{1}{2} \sum_{n=<2>} e^{-j k \frac{2 \pi}{2} n}=\frac{1}{2} \sum_{n=<2>} x[n](-1)^{-k n} \\
& {\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x[0] \\
x[1]
\end{array}\right]} \\
& a_{k}=a_{k+4}=\frac{1}{4} \sum_{n=<4>} x[n] e^{-j k \Omega_{0} n}=\frac{1}{4} \sum_{n=<4>} e^{-j k \frac{2 \pi}{4} n}=\frac{1}{4} \sum_{n=<4>} x[n] j^{-k n} \\
& {\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right]\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3]
\end{array}\right]}
\end{aligned}
$$

Number of multiples increases as N^{2}.

Fast Fourier "Transform"

Exploit structure of Fourier series to simplify its calculation.
Divide FS of length $2 N$ into two of length N (divide and conquer).

Matrix formulation of 8-point FS:

$$
\left[\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5} \\
c_{6} \\
c_{7}
\end{array}\right]=\left[\begin{array}{cccccccc}
W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{1} & W_{8}^{2} & W_{8}^{3} & W_{8}^{4} & W_{8}^{5} & W_{8}^{6} & W_{8}^{7} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{3} & W_{8}^{6} & W_{8}^{1} & W_{8}^{4} & W_{8}^{7} & W_{8}^{2} & W_{8}^{5} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{5} & W_{8}^{2} & W_{8}^{7} & W_{8}^{4} & W_{8}^{1} & W_{8}^{6} & W_{8}^{3} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} & W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} \\
W_{8}^{0} & W_{8}^{7} & W_{8}^{6} & W_{8}^{5} & W_{8}^{4} & W_{8}^{3} & W_{8}^{2} & W_{8}^{1}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4] \\
x[5] \\
x[6] \\
x[7]
\end{array}\right]
$$

where $W_{N}=e^{-j \frac{2 \pi}{N}}$
$8 \times 8=64$ multiplications

FFT

Divide into two 4-point series (divide and conquer).
Even-numbered entries in $x[n]$:

$$
\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[2] \\
x[4] \\
x[6]
\end{array}\right]
$$

Odd-numbered entries in $x[n]$:

$$
\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]\left[\begin{array}{c}
x[1] \\
x[3] \\
x[5] \\
x[7]
\end{array}\right]
$$

Sum of multiplications $=2 \times(4 \times 4)=32$: fewer than the previous 64 .

FFT

Break the original 8-point DTFS coefficients c_{k} into two parts:

$$
c_{k}=d_{k}+e_{k}
$$

where d_{k} comes from the even-numbered $x[n]$ (e.g., a_{k}) and e_{k} comes from the odd-numbered $x[n]$ (e.g., b_{k})

FFT

The 4-point DTFS coefficients a_{k} of the even-numbered $x[n]$

$$
\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[2] \\
x[4] \\
x[6]
\end{array}\right]=\left[\begin{array}{cccc}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[2] \\
x[4] \\
x[6]
\end{array}\right]
$$

contribute to the 8-point DTFS coefficients d_{k} :
$\left[\begin{array}{c}d_{0} \\ d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \\ d_{5} \\ d_{6} \\ d_{7}\end{array}\right]=\left[\begin{array}{llllllll}W_{8}^{0} & W_{8}^{0} \\ W_{8}^{0} & W_{8}^{1} & W_{8}^{2} & W_{8}^{3} & W_{8}^{4} & W_{8}^{5} & W_{8}^{6} & W_{8}^{7} \\ W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\ W_{8}^{0} & W_{8}^{3} & W_{8}^{6} & W_{8}^{1} & W_{8}^{4} & W_{8}^{7} & W_{8}^{2} & W_{8}^{5} \\ W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\ W_{8}^{0} & W_{8}^{5} & W_{8}^{2} & W_{8}^{7} & W_{8}^{4} & W_{8}^{1} & W_{8}^{6} & W_{8}^{3} \\ W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} & W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} \\ W_{8}^{0} & W_{8}^{7} & W_{8}^{6} & W_{8}^{5} & W_{8}^{4} & W_{8}^{3} & W_{8}^{2} & W_{8}^{1}\end{array}\right]\left[\begin{array}{c}x[0] \\ x[1] \\ x[2] \\ x[3] \\ x[4] \\ x[5] \\ x[6] \\ x[7]\end{array}\right]$

FFT

The 4-point DTFS coefficients a_{k} of the even-numbered $x[n]$

$$
\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[2] \\
x[4] \\
x[6]
\end{array}\right]=\left[\begin{array}{cccc}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[2] \\
x[4] \\
x[6]
\end{array}\right]
$$

contribute to the 8-point DTFS coefficients d_{k} :

$$
\left[\begin{array}{c}
d_{0} \\
d_{1} \\
d_{2} \\
d_{3} \\
d_{4} \\
d_{5} \\
d_{6} \\
d_{7}
\end{array}\right]=\left[\begin{array}{llll}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} \\
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
\\
x[2] \\
\\
x[4] \\
\\
x[6] \\
\end{array}\right]
$$

FFT

The 4-point DTFS coefficients a_{k} of the even-numbered $x[n]$

$$
\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[2] \\
x[4] \\
x[6]
\end{array}\right]=\left[\begin{array}{cccc}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[2] \\
x[4] \\
x[6]
\end{array}\right]
$$

contribute to the 8-point DTFS coefficients d_{k} :

$$
\left[\begin{array}{c}
d_{0} \\
d_{1} \\
d_{2} \\
d_{3} \\
d_{4} \\
d_{5} \\
d_{6} \\
d_{7}
\end{array}\right]=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} \\
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2}
\end{array}\right]\left[\begin{array}{l}
x[0] \\
\\
x[2] \\
\\
x[4] \\
x[6]
\end{array}\right]
$$

FFT

The 4-point DTFS coefficients a_{k} of the even-numbered $x[n]$

$$
\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[2] \\
x[4] \\
x[6]
\end{array}\right]=\left[\begin{array}{cccc}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2}
\end{array}\right]\left[\begin{array}{c}
x[0] \\
x[2] \\
x[4] \\
x[6]
\end{array}\right]
$$

contribute to the 8-point DTFS coefficients d_{k} :
$\left[\begin{array}{c}d_{0} \\ d_{1} \\ d_{2} \\ d_{3} \\ d_{4} \\ d_{5} \\ d_{6} \\ d_{7}\end{array}\right]=\left[\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ a_{0} \\ a_{1} \\ a_{2} \\ a_{3}\end{array}\right]=\left[\begin{array}{llll}W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\ W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\ W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\ W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} \\ W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\ W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\ W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\ W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2}\end{array}\right]\left[\begin{array}{l}x[0] \\ x[2] \\ \\ x[4] \\ x[6]\end{array}\right]$

FFT

The e_{k} components result from the odd-number entries in $x[n]$.

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]\left[\begin{array}{l}
x[1] \\
x[3] \\
x[5] \\
x[7]
\end{array}\right]=\left[\begin{array}{ccccc}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2}
\end{array}\right]\left[\begin{array}{c}
x[1] \\
x[3] \\
x[5] \\
x[7]
\end{array}\right]} \\
{\left[\begin{array}{l}
e_{0} \\
e_{1} \\
e_{2} \\
e_{3} \\
e_{4} \\
e_{5} \\
e_{6} \\
e_{7}
\end{array}\right]=\left[\begin{array}{lllllll}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} \\
W_{8}^{0} & W_{8}^{1} & W_{8}^{2} & W_{8}^{3} & W_{8}^{4} & W_{8}^{5} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} & W_{8}^{0} & W_{8}^{2} & W_{8}^{4} \\
W_{8}^{6} \\
W_{8}^{0} & W_{8}^{3} & W_{8}^{6} & W_{8}^{1} & W_{8}^{4} & W_{8}^{7} & W_{8}^{2} \\
W_{8}^{5} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} & W_{8}^{0} \\
W_{8}^{4} \\
W_{8}^{0} & W_{8}^{5} & W_{8}^{2} & W_{8}^{7} & W_{8}^{4} & W_{8}^{1} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2} & W_{8}^{0} & W_{8}^{6} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{7} & W_{8}^{6} & W_{8}^{5} & W_{8}^{4} & W_{8}^{3} & W_{8}^{2}
\end{array} W_{8}^{1}\right.}
\end{array}\right]\left[\begin{array}{l}
x[0] \\
x[1] \\
x[2] \\
x[3] \\
x[4] \\
x[5] \\
x[6] \\
x[7]
\end{array}\right]
$$

FFT

The e_{k} components result from the odd-number entries in $x[n]$.

$$
\begin{aligned}
& {\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]\left[\begin{array}{l}
x[1] \\
x[3] \\
x[5] \\
x[7]
\end{array}\right]=\left[\begin{array}{cccc}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2}
\end{array}\right]\left[\begin{array}{c}
x[1] \\
x[3] \\
x[5] \\
x[7]
\end{array}\right]} \\
& {\left[\begin{array}{l}
e_{0} \\
e_{1} \\
e_{2} \\
e_{3} \\
e_{4} \\
e_{5} \\
e_{6} \\
e_{7}
\end{array}\right]=\left[\begin{array}{lllll}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
& W_{8}^{1} & W_{8}^{3} & W_{8}^{5} & W_{8}^{7} \\
& W_{8}^{2} & W_{8}^{6} & W_{8}^{2} & W_{8}^{6} \\
& W_{8}^{3} & W_{8}^{1} & W_{8}^{7} & W_{8}^{5} \\
& W_{8}^{4} & W_{8}^{4} & W_{8}^{4} & W_{8}^{4} \\
& W_{8}^{5} & W_{8}^{7} & W_{8}^{1} & W_{8}^{3} \\
& W_{8}^{6} & W_{8}^{2} & W_{8}^{6} & W_{8}^{2} \\
W_{8}^{7} & W_{8}^{5} & W_{8}^{3} & W_{8}^{1}
\end{array}\right]\left[\begin{array}{l}
x[1] \\
x[3] \\
x[5] \\
x[7]
\end{array}\right]}
\end{aligned}
$$

FFT

The e_{k} components result from the odd-number entries in $x[n]$.

$$
\begin{aligned}
& {\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]\left[\begin{array}{c}
x[1] \\
x[3] \\
x[5] \\
x[7]
\end{array}\right]=\left[\begin{array}{llll}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2}
\end{array}\right]\left[\begin{array}{l}
x[1] \\
x[3] \\
x[5] \\
x[7]
\end{array}\right]} \\
& {\left[\begin{array}{l}
e_{0} \\
e_{1} \\
e_{2} \\
e_{3} \\
e_{4} \\
e_{5} \\
e_{6} \\
e_{7}
\end{array}\right]=\left[\begin{array}{l}
W_{8}^{0} b_{0} \\
W_{8}^{1} b_{1} \\
W_{8}^{2} b_{2} \\
W_{8}^{3} b_{3} \\
W_{8}^{4} b_{0} \\
W_{8}^{5} b_{1} \\
W_{8}^{6} b_{2} \\
W_{8}^{7} b_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{1} & W_{8}^{3} & W_{8}^{5} & W_{8}^{7} \\
W_{8}^{2} & W_{8}^{6} & W_{8}^{2} & W_{8}^{6} \\
W_{8}^{3} & W_{8}^{1} & W_{8}^{7} & W_{8}^{5} \\
W_{8}^{4} & W_{8}^{4} & W_{8}^{4} & W_{8}^{4} \\
W_{8}^{5} & W_{8}^{7} & W_{8}^{1} & W_{8}^{3} \\
W_{8}^{6} & W_{8}^{2} & W_{8}^{6} & W_{8}^{2} \\
W_{8}^{7} & W_{8}^{5} & W_{8}^{3} & W_{8}^{1}
\end{array}\right]\left[\begin{array}{l}
x[1] \\
x[3] \\
x[7]
\end{array}\right]}
\end{aligned}
$$

FFT

The e_{k} components result from the odd-number entries in $x[n]$.

$$
\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{llll}
W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\
W_{4}^{0} & W_{4}^{1} & W_{4}^{2} & W_{4}^{3} \\
W_{4}^{0} & W_{4}^{2} & W_{4}^{0} & W_{4}^{2} \\
W_{4}^{0} & W_{4}^{3} & W_{4}^{2} & W_{4}^{1}
\end{array}\right]\left[\begin{array}{l}
x[1] \\
x[3] \\
x[5] \\
x[7]
\end{array}\right]=\left[\begin{array}{cccc}
W_{8}^{0} & W_{8}^{0} & W_{8}^{0} & W_{8}^{0} \\
W_{8}^{0} & W_{8}^{2} & W_{8}^{4} & W_{8}^{6} \\
W_{8}^{0} & W_{8}^{4} & W_{8}^{0} & W_{8}^{4} \\
W_{8}^{0} & W_{8}^{6} & W_{8}^{4} & W_{8}^{2}
\end{array}\right]\left[\begin{array}{c}
x[1] \\
x[3] \\
x[5] \\
x[7]
\end{array}\right]
$$

$\left[\begin{array}{l}e_{0} \\ e_{1} \\ e_{2} \\ e_{3} \\ e_{4} \\ e_{5} \\ e_{6} \\ e_{7}\end{array}\right]=\left[\begin{array}{l}W_{8}^{0} b_{0} \\ W_{8}^{1} b_{1} \\ W_{8}^{2} b_{2} \\ W_{8}^{3} b_{3} \\ W_{8}^{4} b_{0} \\ W_{8}^{5} b_{1} \\ W_{8}^{6} b_{2} \\ W_{8}^{7} b_{3}\end{array}\right]=\left[\begin{array}{l}W_{8}^{0} \\ W_{8}^{1} \\ W_{8}^{2} \\ W_{8}^{3} \\ W_{8}^{4} \\ W_{8}^{5} \\ W_{8}^{6} \\ W_{8}^{7}\end{array}\right.$
W_{8}^{0}
W_{8}^{3}
W_{8}^{6}
W_{8}^{1}
W_{8}^{4}
W_{8}^{7}
W_{8}^{2}
W_{8}^{5}
W_{8}^{0}
W_{8}^{5}
W_{8}^{2}
W_{8}^{7}
W_{8}^{4}
W_{8}^{1}
W_{8}^{6}
W_{8}^{3}
$\left.\begin{array}{l}W_{8}^{0} \\ W_{8}^{7} \\ W_{8}^{6} \\ W_{8}^{5} \\ W_{8}^{4} \\ W_{8}^{3} \\ W_{8}^{2} \\ W_{8}^{1}\end{array}\right]\left[\begin{array}{c} \\ x[1] \\ x[3] \\ x[5] \\ x[7]\end{array}\right]$

FFT

Combine a_{k} and b_{k} to get c_{k}.

$$
\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5} \\
c_{6} \\
c_{7}
\end{array}\right]=\left[\begin{array}{l}
d_{0}+e_{0} \\
d_{1}+e_{1} \\
d_{2}+e_{2} \\
d_{3}+e_{3} \\
d_{4}+e_{4} \\
d_{5}+e_{5} \\
d_{6}+e_{6} \\
d_{7}+e_{7}
\end{array}\right]=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]+\left[\begin{array}{l}
W_{8}^{0} b_{0} \\
W_{8}^{1} b_{1} \\
W_{8}^{2} b_{2} \\
W_{8}^{3} b_{3} \\
W_{8}^{4} b_{0} \\
W_{8}^{5} b_{1} \\
W_{8}^{6} b_{2} \\
W_{8}^{7} b_{3}
\end{array}\right]
$$

FFT procedure:

- compute a_{k} and $b_{k}: 2 \times(4 \times 4)=32$ multiplies
- combine $c_{k}=a_{k}+W_{8}^{k} b_{k}: 8$ multiples
- total 40 multiplies: fewer than the orginal $8 \times 8=64$ multiplies

Scaling of FFT algorithm

How does the new algorithm scale?
Let $M(N)=$ number of multiplies to perform an N point FFT.

$$
\begin{aligned}
M(1) & =0 \\
M(2) & =2 M(1)+2=2 \\
M(4) & =2 M(2)+4=2 \times 4 \\
M(8) & =2 M(4)+8=3 \times 8 \\
M(16) & =2 M(8)+16=4 \times 16 \\
M(32) & =2 M(16)+32=5 \times 32 \\
M(64) & =2 M(32)+64=6 \times 64 \\
M(128) & =2 M(64)+128=7 \times 128
\end{aligned}
$$

$$
M(N)=\left(\log _{2} N\right) \times N
$$

Significantly smaller than N^{2} for N large.

Fourier Transform: Generalize to Aperiodic Signals

An aperiodic signal can be thought of as periodic with infinite period.
Let $x[n]$ represent an aperiodic signal DT signal.

"Periodic extension" : $x_{N}[n]=\sum_{k=-\infty}^{\infty} x[n+k N]$

Then $x[n]=\lim _{N \rightarrow \infty} x_{N}[n]$.

Fourier Transform

Represent $x_{N}[n]$ by its Fourier series.

$$
a_{k}=\frac{1}{N} \sum_{N} x_{N}[n] e^{-j \frac{2 \pi}{N} k n}=\frac{1}{N} \sum_{n=-N_{1}}^{N_{1}} e^{-j \frac{2 \pi}{N} k n}=\frac{1}{N} \frac{\sin \left(N_{1}+\frac{1}{2}\right) \Omega}{\sin \frac{1}{2} \Omega}
$$

Fourier Transform

Doubling period doubles \# of harmonics in given frequency interval.

$$
a_{k}=\frac{1}{N} \sum_{N} x_{N}[n] e^{-j \frac{2 \pi}{N} k n}=\frac{1}{N} \sum_{n=-N_{1}}^{N_{1}} e^{-j \frac{2 \pi}{N} k n}=\frac{1}{N} \frac{\sin \left(N_{1}+\frac{1}{2}\right) \Omega}{\sin \frac{1}{2} \Omega}
$$

Fourier Transform

As $N \rightarrow \infty$, discrete harmonic amplitudes \rightarrow a continuum $E(\Omega)$.

Fourier Transform

As $N \rightarrow \infty$, synthesis sum \rightarrow integral.

$$
\Omega_{0}=\frac{2 \pi}{N} \quad \Omega=k \Omega_{0}=k \frac{2 \pi}{N}
$$

$$
\begin{aligned}
& N a_{k}=\sum_{n=<N>} x[n] e^{-j \frac{2 \pi}{N} k n}=\sum_{n=<N>} x[n] e^{-j \Omega n}=E(\Omega) \\
& x[n]=\sum_{k=<N>} \underbrace{\frac{1}{N} E(\Omega)}_{a_{k}} e^{j \frac{2 \pi}{N} k n}=\sum_{k=<N>} \frac{\Omega_{0}}{2 \pi} E(\Omega) e^{j \Omega n} \rightarrow \frac{1}{2 \pi} \int_{2 \pi} E(\Omega) e^{j \Omega n} d \Omega
\end{aligned}
$$

Fourier Transform

Replacing $E(\Omega)$ by $X\left(e^{j \Omega}\right)$ yields the DT Fourier transform relations.

$$
\begin{aligned}
X\left(e^{j \Omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n} & & \text { ("analysis" equation) } \\
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \Omega}\right) e^{j \Omega n} d \Omega & & \text { ("synthesis" equation) }
\end{aligned}
$$

Relation between Fourier and Z Transforms

If the Z transform of a signal exists and if the ROC includes the unit circle, then the Fourier transform is equal to the Z transform evaluated on the unit circle.

Z transform:

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

DT Fourier transform:

$$
X\left(e^{j \Omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \Omega n}=H(z)_{z=e^{j \Omega}}
$$

Relation between Fourier and Z Transforms

Fourier transform "inherits" properties of Z transform.

Property	$x[n]$	$X(z)$	$X\left(e^{j \Omega}\right)$
Linearity	$a x_{1}[n]+b x_{2}[n]$	$a X_{1}(s)+b X_{2}(s)$	$a X_{1}\left(e^{j \Omega}\right)+b X_{2}\left(e^{j \Omega}\right)$
Time shift	$x\left[n-n_{0}\right]$	$z^{-n_{0}} X(z)$	$e^{-j \Omega n_{0}} X\left(e^{j \Omega}\right)$
Multiply by n	$n x[n]$	$-z \frac{d}{d z} X(z)$	$j \frac{d}{d \Omega} X\left(e^{j \Omega}\right)$
Convolution	$\left(x_{1} * x_{2}\right)[n]$	$X_{1}(z) \times X_{2}(z)$	$X_{1}\left(e^{j \Omega}\right) \times X_{2}\left(e^{j \Omega}\right)$

DT Fourier Series of Images

Magnitude

Angle

DT Fourier Series of Images

Magnitude

Uniform Angle

DT Fourier Series of Images

Uniform Magnitude

Angle

DT Fourier Series of Images

Different
Magnitude

Angle

DT Fourier Series of Images

Magnitude

Angle

DT Fourier Series of Images

Magnitude

Angle

DT Fourier Series of Images

Different
Magnitude

Angle

Fourier Representations: Summary

Thinking about signals by their frequency content and systems as filters has a large number of practical applications.

MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

