6.003: Signals and Systems

Relations among Fourier Representations

November 15, 2011

Mid-term Examination #3

Wednesday, November 16, 7:30-9:30pm,

No recitations on the day of the exam.

Coverage: Lectures 1–18

Recitations 1–16

Homeworks 1–10

Homework 10 will not be collected or graded.

Solutions are posted.

Closed book: 3 pages of notes $(8\frac{1}{2} \times 11 \text{ inches; front and back}).$

No calculators, computers, cell phones, music players, or other aids.

Designed as 1-hour exam; two hours to complete.

Prior term midterm exams have been posted on the 6.003 website.

Fourier Representations

We've seen a variety of Fourier representations:

- CT Fourier series
- CT Fourier transform
- DT Fourier series
- DT Fourier transform

Today: relations among the four Fourier representations.

Four Fourier Representations

We have discussed four closely related Fourier representations.

DT Fourier Series

$$a_k = a_{k+N} = \frac{1}{N} \sum_{n=< N>} x[n] e^{-j\frac{2\pi}{N}kn}$$

 $x[n] = x[n+N] = \sum_{n=< N>} a_k e^{j\frac{2\pi}{N}kn}$

 $k = \langle N \rangle$

DT Fourier transform

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{<2\pi>} X(e^{j\Omega})e^{j\Omega n}d\Omega$$

CT Fourier Series

$$a_k = \frac{1}{T} \int_T x(t)e^{-j\frac{2\pi}{T}kt}dt$$
$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{T}kt}$$

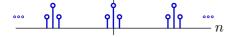
$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega$$

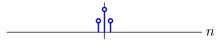
Four Types of "Time"

discrete vs. continuous (\updownarrow) and periodic vs aperiodic (\leftrightarrow)

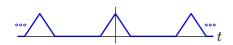
DT Fourier Series

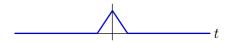
DT Fourier transform





CT Fourier Series



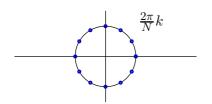


Four Types of "Frequency"

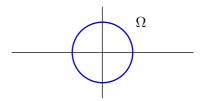
discrete vs. continuous (\leftrightarrow) and periodic vs aperiodic (\updownarrow)

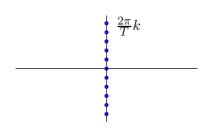
DT Fourier Series

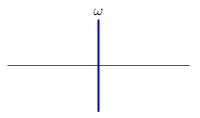
DT Fourier transform



CT Fourier Series







Relation between Fourier Series and Transform

A periodic signal can be represented by a Fourier series or by an equivalent Fourier transform.

Series: represent periodic signal as weighted sum of harmonics

$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0 kt}$$
; $\omega_0 = \frac{2\pi}{T}$

The Fourier transform of a sum is the sum of the Fourier transforms:

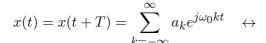
$$X(j\omega) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0)$$

Therefore periodic signals can be equivalently represented as Fourier transforms (with impulses!).

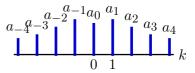
7

Relation between Fourier Series and Transform

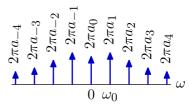
A periodic signal can be represented by a Fourier series or by an equivalent Fourier transform.



Fourier Series



Fourier Transform

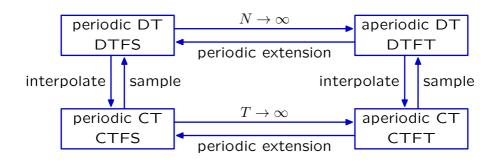


Relations among Fourier Representations

Explore other relations among Fourier representations.

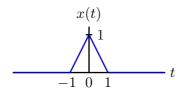
Start with an aperiodic CT signal. Determine its Fourier transform.

Convert the signal so that it can be represented by alternate Fourier representations and compare.



Start with the CT Fourier Transform

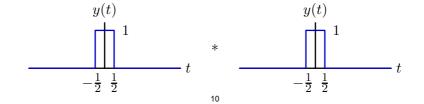
Determine the Fourier transform of the following signal.



Could calculate Fourier transform from the definition.

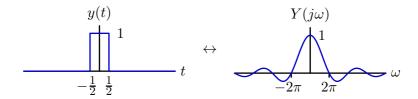
$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{j\omega t}dt$$

Easier to calculate x(t) by convolution of two square pulses:

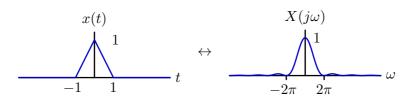


Start with the CT Fourier Transform

The transform of y(t) is $Y(j\omega) = \frac{\sin(\omega/2)}{\omega/2}$



so the transform of x(t)=(y*y)(t) is $X(j\omega)=Y(j\omega)\times Y(j\omega).$



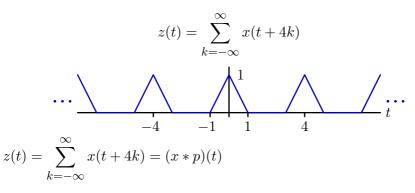
What is the effect of making a signal periodic in time?

Find Fourier transform of periodic extension of x(t) to period T=4.

$$z(t) = \sum_{k=-\infty}^{\infty} x(t+4k)$$
...
$$-4 \qquad -1 \qquad 1 \qquad 4$$

Could calculate $Z(j\omega)$ for the definition ... ugly.

Easier to calculate z(t) by convolving x(t) with an impulse train.



where

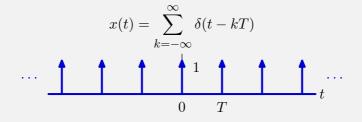
$$p(t) = \sum_{k=-\infty}^{\infty} \delta(t+4k)$$

Then

$$Z(j\omega) = X(j\omega) \times P(j\omega)$$

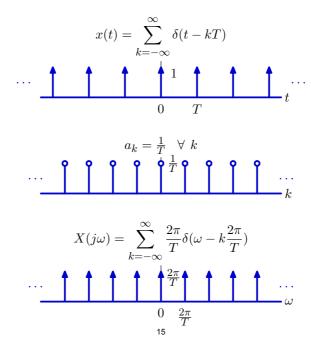
Check Yourself

What's the Fourier transform of an impulse train?



Check Yourself

What's the Fourier transform of an impulse train?



Easier to calculate z(t) by convolving x(t) with an impulse train.

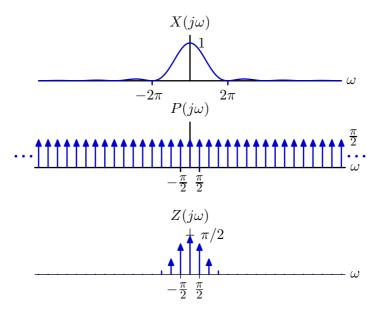
where

$$p(t) = \sum_{k=-\infty}^{\infty} \delta(t+4k)$$

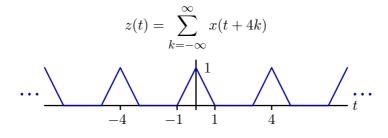
Then

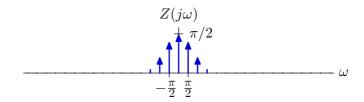
$$Z(j\omega) = X(j\omega) \times P(j\omega)$$

Convolving in time corresponds to multiplying in frequency.

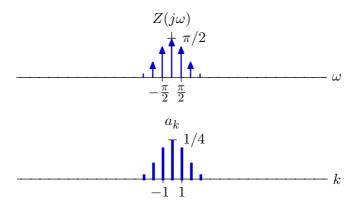


The Fourier transform of a periodically extended function is a discrete function of frequency ω .

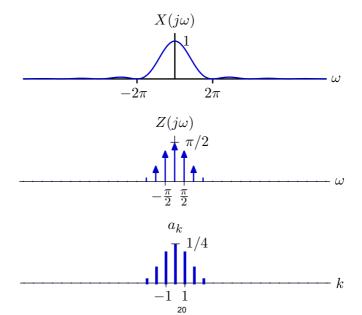




The weight (area) of each impulse in the Fourier transform of a periodically extended function is 2π times the corresponding Fourier series coefficient.



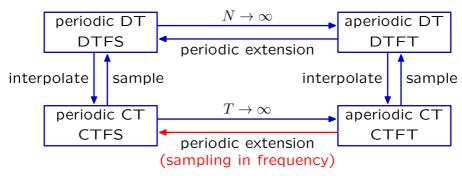
The effect of periodic extension of x(t) to z(t) is to sample the frequency representation.



Periodic extension of CT signal \rightarrow discrete function of frequency.

Periodic extension

- = convolving with impulse train in time
 - = multiplying by impulse train in frequency
 - → sampling in frequency

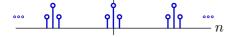


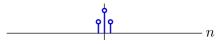
Four Types of "Time"

discrete vs. continuous (\updownarrow) and periodic vs aperiodic (\leftrightarrow)

DT Fourier Series

DT Fourier transform





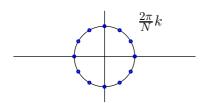
CT Fourier Series

Four Types of "Frequency"

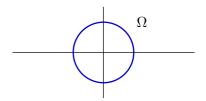
discrete vs. continuous (\leftrightarrow) and periodic vs aperiodic (\updownarrow)

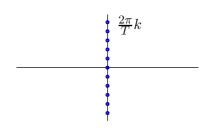
DT Fourier Series

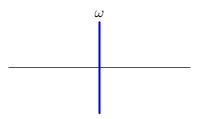
DT Fourier transform



CT Fourier Series



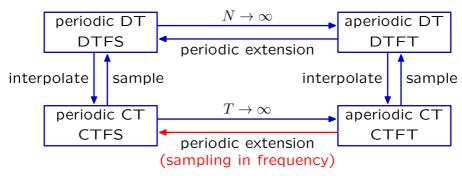




Periodic extension of CT signal \rightarrow discrete function of frequency.

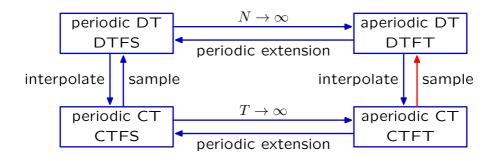
Periodic extension

- = convolving with impulse train in time
 - = multiplying by impulse train in frequency
 - → sampling in frequency



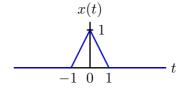
Relations among Fourier Representations

Compare to sampling in time.

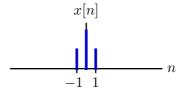


Sampling a CT signal generates a DT signal.

$$x[n] = x(nT)$$



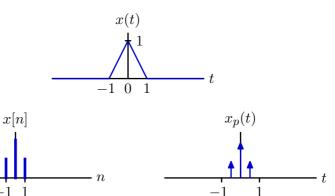
Take $T=\frac{1}{2}$.



What is the effect on the frequency representation?

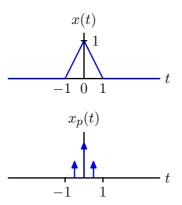
We can generate a signal with the same shape by multiplying x(t) by an impulse train with $T=\frac{1}{2}.$

$$x_p(t) = x(t) \times p(t)$$
 where $p(t) = \sum_{k=-\infty}^{\infty} \delta(t + kT)$

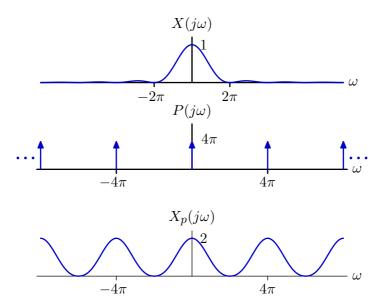


We can generate a signal with the same shape by multiplying x(t) by an impulse train with $T=\frac{1}{2}.$

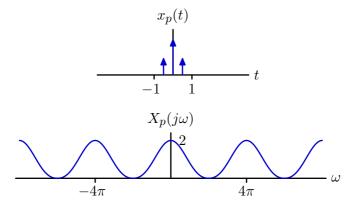
$$x_p(t) = x(t) \times p(t)$$
 where $p(t) = \sum_{k=-\infty}^{\infty} \delta(t + kT)$



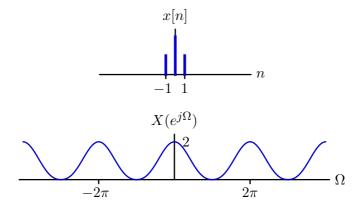
Multiplying x(t) by an impulse train in time is equivalent to convolving $X(j\omega)$ by an impulse train in frequency (then $\div 2\pi$).



Fourier transform of sampled signal $x_p(t)$ is periodic in ω , period 4π .

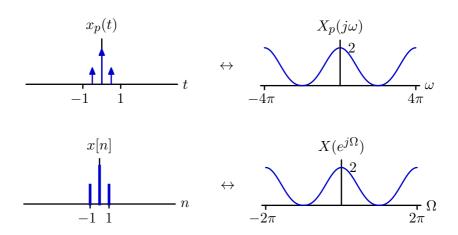


Fourier transform of sampled signal $x_p(t)$ has same shape as DT Fourier transform of x[n].



DT Fourier transform

CT Fourier transform of sampled signal $x_p(t) = \text{DT}$ Fourier transform of samples x[n] where $\Omega = \omega T$, i.e., $X(j\omega) = X(e^{j\Omega})\Big|_{\Omega = \omega T}$.



 $\Omega = \omega T = \frac{1}{2}\omega$

Relation between CT and DT Fourier Transforms

Compare the definitions:

$$X(e^{j\Omega}) = \sum_{n} x[n]e^{-j\Omega n}$$

$$X_{p}(j\omega) = \int x_{p}(t)e^{-j\omega t}dt$$

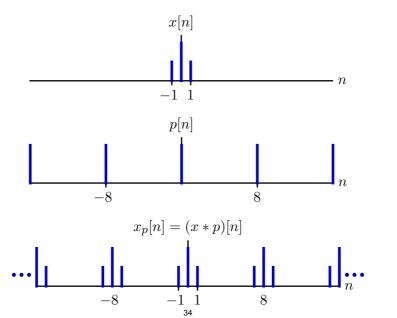
$$= \int \sum_{n} x[n]\delta(t - nT)e^{-j\omega t}dt$$

$$= \sum_{n} x[n] \int \delta(t - nT)e^{-j\omega t}dt$$

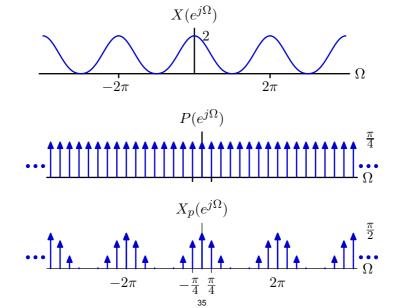
$$= \sum_{n} x[n]e^{-j\omega nT}$$

$$\Omega = \omega T$$

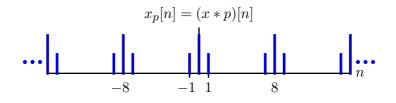
Periodic extension of a DT signal is equivalent to convolution of the signal with an impulse train.

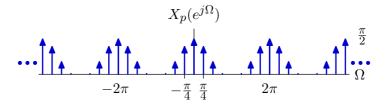


Convolution by an impulse train in time is equivalent to multiplication by an impulse train in frequency.

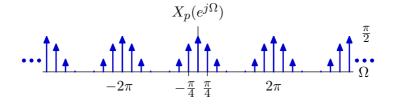


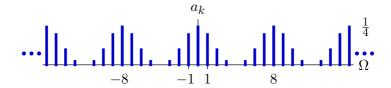
Periodic extension of a discrete signal (x[n]) results in a signal $(x_p[n])$ that is both periodic and discrete. Its transform $(X_p(e^{j\Omega}))$ is also periodic and discrete.



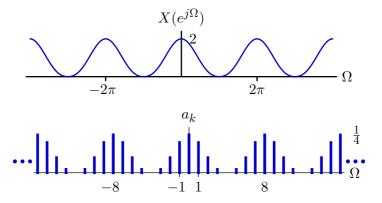


The weight of each impulse in the Fourier transform of a periodically extended function is 2π times the corresponding Fourier series coefficient.





The effect of periodic extension was to sample the frequency representation.

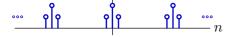


Four Types of "Time"

discrete vs. continuous (\updownarrow) and periodic vs aperiodic (\leftrightarrow)

DT Fourier Series

DT Fourier transform



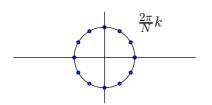
CT Fourier Series

Four Types of "Frequency"

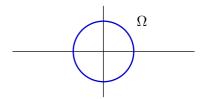
discrete vs. continuous (\leftrightarrow) and periodic vs aperiodic (\updownarrow)

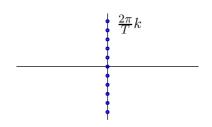
DT Fourier Series

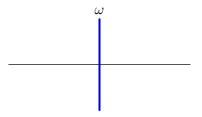
DT Fourier transform



CT Fourier Series



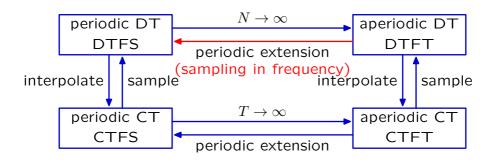




Periodic extension of a DT signal produces a discrete function of frequency.

Periodic extension

- = convolving with impulse train in time
 - = multiplying by impulse train in frequency
 - \rightarrow sampling in frequency



Four Fourier Representations

Underlying structure \rightarrow view as one transform, not four.

DT Fourier Series

$$a_k = a_{k+N} = \frac{1}{N} \sum_{n=< N>} x[n] e^{-j\frac{2\pi}{N}kn}$$

 $x[n] = x[n+N] = \sum_{k=< N>} a_k e^{j\frac{2\pi}{N}kn}$

DT Fourier transform

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{<2\pi>} X(e^{j\Omega})e^{j\Omega n}d\Omega$$

CT Fourier Series

$$a_k = \frac{1}{T} \int_T x(t)e^{-j\frac{2\pi}{T}kt}dt$$
$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{T}kt}$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega$$

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.