
MIT OpenCourseWare
http://ocw.mit.edu 

6.005 Elements of Software Construction 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Project 3: Instant Messaging 

6.005 Elements of Software Construction 
Fall 2008 

Project 3: Instant Messaging 

Problem 
Purpose 
Specification 
Tasks 
Infrastructure 
Deliverables and Grading 
Hints 
Resources 

Problem 

Instant messaging (IM) is a staple of the web and has been around almost since its inception, 
starting with simple text-based programs like talk and IRC and progressing to today's GUI-
based IM clients from Yahoo, Microsoft, AOL, etc. In this project you will design and 
implement an IM system, including both the client and the server. The following 
characteristics constrain the design space of an IM system: 

●	 Real-time communication. An IM conversation happens in real time: one person 
types some text, presses "enter," and the other person (almost) immediately sees the 
text. 

●	 Number of parties. An IM conversation can happen between two or more people. 
Some systems only allow two people to communicate; others allow more than two 

This course makes use of Athena, MIT's UNIX-based computing environment. OCW does not provide access to this environment.

http://en.wikipedia.org/wiki/Instant_messaging
http://en.wikipedia.org/wiki/Talk_(Unix)
http://en.wikipedia.org/wiki/IRC


Project 3: Instant Messaging 

people. Most systems allow a person to be involved in multiple conversations at the 
same time. 

●	 Based on typed text. The main mode of communication is via text, as opposed to 
voice or video. 

●	 Connected over a network. The parties involved in the communication may be in 
physically remote locations, and are connected over the internet. 

Your task will be to design an instant messaging system with the above properties, as well as 
additional properties that you will incorporate into your design. This system will include a 
server component that handles the transfer of messages and other data, and a client 
component with a graphical user interface. 

Purpose 

The purpose of this project is twofold. First, you will learn several Java technologies, including 
networking (to support connectivity over a network), sockets and I/O (to support real-time, 
text-based communication), and threads (to support two or more people communicating 
concurrently). State machines may be useful to specify certain aspects of the system's 
behavior. 

Second, this project will introduce you to the state-of-the-art for enabling human-computer 
interaction: graphical user interfaces. You will: 

●	 become familiar with Swing, a graphical user interface (GUI) toolkit for Java, that is 
similar to many other such toolkits; 

●	 learn important GUI programming concepts, including the notion of a view hierarchy 
and the model-view-controller design pattern; 

●	 use event-based programming and the publish-subscribe pattern; 
●	 use object modeling notation to explore and express these structures; 
●	 and confront user interface design challenges. 

Throughout the project, you will need to design and implement mutable datatypes, paying 
particular attention to their specifications and how they interact with one another. 

Specification 

Implement an IM system in Java with the following properties: 



Project 3: Instant Messaging 

●	 Client. The client is a 
program that opens a network 
connection with the IM server 
at a specified IP address and 
port number. Once the 
connection is open, the client 
program presents a graphical 
user interface for performing 
the interactions listed below. 

●	 Server. The server is a 
program that accepts 
connections from clients. A server should be able to maintain an unlimited number of 
open client connections, and clients should be able to connect and disconnect as they 
please. 

The server is responsible for managing the state of both clients and conversations. 

●	 Conversations. A conversation is an interactive text-exchange session between some 
number of clients, and is the ultimate purpose of the IM system. The exact nature of a 
conversation is not specified (although the hints section details a couple possibilities), 
except to say that it allows clients to send text messages to each other. Messaging in a 
conversation should be instantaneous, in the sense that incoming messages should be 
displayed immediately, not held until the recipient requests them. 

●	 Client/server interaction. A client and server interact by exchanging messages in a 
protocol of your devising — the protocol is not specified. Using this protocol, the user 
interface presented by the client should: 

�❍ Provide a facility for seeing which users are currently logged in; 
�❍ Provide a facility for creating, joining and leaving conversations; 
�❍ Allow the user to participate in multiple conversations simultaneously; 
�❍ Visually separate messages of different conversations (e.g., into distinct 

windows, tabs, panes, etc.); 
�❍ Provide a history of all the messages within a conversation for as long as the 

client is in that conversation; 

●	 No authentication. In a production system, logging in as a client would require some 
form of password authentication. For simplicity, this IM system will not use 
authentication, meaning that anyone can log in as a client and claim any username 



Project 3: Instant Messaging 

they choose. 

Tasks 
1. 	Team preparation. Meet with your team during the project work period on November 

19 and complete the lab on team building. 

2. 	Individual preparation. Complete the lab on networking by checking out friendly 

from your personal SVN repository. You may also complete the optional Swing lab by 
checking out guiwords from your personal SVN repository (or you may do this lab with 

your group). These labs are independent of each other. 
3. 	Abstract design. Define a precise notion of conversation in your IM system. See the 

hints on how to do this. Construct an object model that captures the essential concepts 
of instant messaging from a problem perspective, and their relationships to one 
another. Explain the important modeling decisions you made. Describe alternatives to 
particular decisions and justify your choice. 

4. 	Client/server protocol. Design a set of commands the clients and server will use to 
communicate, allowing clients to perform the actions stipulated by the specification. 
Create a specification of the client/server protocol as a grammar or state machine. 
Describe possible protocol messages, the state of the server, and the state of the client 
(if it stores any). 

5. 	Usability design. Sketch your user interface and its various screens and dialogs. Use 
these sketches to explore alternatives quickly and to plan the structure and flow of 
your interface. Sketching on paper is recommended. Turn in the sketches you decided 
to go with, along with commentary as needed to explain non-obvious parts. Briefly 
point out the merits of your design. 

6. 	Code design. Design your program with a module dependency diagram that includes 
all model, view, and controller classes. Explain important design decisions, and justify 
your choices with reference to specific alternatives for particular decisions. Your design 
should minimize the risk of concurrency bugs (like race conditions and deadlocks) and 
should support easy unit testing of your modules. 

7. 	Testing strategy. Devise a strategy for testing your IM system. Describe what 
automated tests you will use, and what manual tests you will perform. Since UI front-
end testing is often most easily done by hand, documentation of your strategy is 
especially important. As you think about how to test your program, you are likely to 
find that you want to revisit your code design (for example, to make a cleaner API to 
permit unit testing independently of the GUI). 

8. 	Implementation. As always, your code should be clear, well-organized, and usefully 
documented. See the hints for further suggestions. 

9. 	Testing. Execute your testing strategy, using JUnit and by performing manual tests of 



Project 3: Instant Messaging 

the GUI. In your report, document the results of your manual tests. 
10. 	Reflection. Write a brief commentary describing what you learned from this 

experience: 

�❍ What was easy? 
�❍ What was hard? 
�❍ What was unexpected? 
�❍ What would you do differently in designing the chat system if you were to do it 

again? 

Infrastructure


Use the networking lab to learn about network I/O in Java, and the Swing lab for details on 
GUI programming. 

No initial code is provided for this project. However, two runner classes are provided with 
main methods you should fill in: 

● Running main.Client.main(String[]) must start an instance of your GUI chat client. 

● Running main.Server.main(String[]) must start an instance of your chat server. 

You should consider using packages other than main to organize your code. 

Deliverables and Grading 

There are three deadlines for this project. 

For the first deadline, your deliverables are: 

● the team contract; 
● the abstract designs and discussion; 
● the client/server protocol; 
● and the usability design. 

This design deliverable should be submitted by committing one PDF to the deliverables 

folder of your project repository. For your user interface sketches, you should either scan the 
files and place them in your PDF, or you may hand in paper copies of the sketches (keep and
use your originals!) to a TA. 



Project 3: Instant Messaging 

For the second deadline, you will meet with your TA, and your 
deliverables are: 

●	 the code designs and discussion; 
●	 the testing strategy; 
●	 and a demo of some working portion of the project that demonstrates significant effort 

towards understanding a critical or high-risk area of the design. 

The code designs and testing strategy must be submitted by 11am on December 3 as one 
PDF in the deliverables folder of your repository. The demo will take place at the meeting 

with your TA. 

Your demo might show, for example, a basic server that sends and receives messages but 
without a GUI client (see the the hints about telnet). Or you might have a working basic GUI 

with no server backend but a simple API for connecting to one. Talk to your TA beforehand if 
you are unsure about what is sufficient. 

The meeting will also include discussion of the design deliverables from the first two deadlines. 

For the third and final deadline, your deliverables are: 

●	 the implementation; 
●	 the tests; 
●	 the testing report; 
●	 and your reflections on the project. 

The report and reflections should be committed as one PDF in the deliverables folder. 

The grading breakdown is as follows: 

●	 30% for the abstract design, protocol, and usability design 
●	 25% for the code design, initial demo, and testing strategy 
●	 35% for implementation and testing 
●	 10% for reflection 

Awards 



Project 3: Instant Messaging 

The course staff will judge and award prizes to teams whose instant messaging systems 
embody exemplary design and implementation. 

You may submit your project for prize consideration on Monday December 8 during 
lecture time, 11am-12:30pm, in 32-G825. Your team will give a 5-minute presentation to 
the course staff in which you demonstrate your system and describe its design. You must 
commit your work (up to that point) to Subversion by 11 am on December 8. You are not 
required to give this presentation (but then you won't win anything, either). And everyone 
can continue to work on the project until the final deadline, but only the work demonstrated 
in this presentation will be considered for prizes. 

Serious award contenders should consider going above and beyond the required specification 
to implement their own extensions. 

You might add standard instant messaging features like away messages, auto-replies, offline 
messaging, password-protected accounts, user icons, graphical emoticons... or you might 
integrate voice chat, a shared whiteboard, encrypted conversations with perfect forward 
secrecy, or something as yet unheard of! 

Hints 
Defining a conversation. Part of your job is to determine what a conversation means. For 
example, does a conversation have a name, and can other users join the conversation by 
specifying the name? Is it like a chat room, that people can enter and exit? In that case, can 
a conversation be empty (a chatroom can), waiting for users? 

Or is a conversation more like a phone call, where a person "dials" another person? In that 
case, can the receiving party deny the conversation? 

However you define a conversation, remember to keep it simple for your first iteration. You 
can always extend your program with interesting ideas if you have time left. 

Designing a protocol. You must also devise a client/server protocol for this project. You 
should strongly consider using a text-based protocol, which may be easier for testing and 
debugging. 

Services that use plaintext protocols — e.g. HTTP or SMTP — can talk to a human just as well 
as another machine by using a client program that sends and receives characters. Such a 
client program already exists on almost all operating systems, called telnet. You can run 

http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/SMTP


Project 3: Instant Messaging 

telnet by opening a command prompt and typing telnet hostname port. The lab gives you 

some experience with using telnet. 

Handling multiple clients. Since instant messaging is useless without at least two people, 
your server must be able to handle multiple clients connected at the same time. The Friendly 
server you'll develop in the lab gives you some starting code, but note that Friendly doesn't 
need its clients to interact or share any state. Your server will certainly need to do that. One 
reasonable design approach follows the Friendly model (using one thread for reading input 
from each client) but adds a central state machine representing the state of the server (using 
one more thread, to which each of the client threads pass messages through a shared 
queue). 

Read the socket documentation referenced in the lab to understand how network sockets 
operate in Java. Consider how, for example, the server will write to clients while at the same 
time awaiting messages from them. 

Design for safe concurrency. In general, making an argument that an implementation is 
free of concurrency bugs (like race conditions and deadlocks) is very difficult and error-prone. 
The best strategy therefore is to design your program to allow a very simple argument, by 
limiting your use of concurrency and especially avoiding shared state wherever possible. For 
example, one approach is to use concurrency only for reading sockets, and to make the rest 
of the design single-threaded. 

And note that, even though user interfaces are concurrent by nature, Swing is not thread 
safe. Understand what code will run in the main thread, threads you explicitly spin, or the 
Swing event dispatching thread. Recommended reading: Threads and Swing. 

Design for testability. To make it possible to write unit tests without having to open socket 
connections and parse streams of responses, you should design your state machine(s) in such 
a way that they can be driven directly by a unit test -- either by calling methods, or by 
putting messages into a queue read by the state machine's thread. 

Testing GUIs is particularly challenging. Follow good design practice and separate as much 
functionality as possible into modules you can test using automated mechanisms. You should 
maximize the amount of your system you can test with complete independence from any GUI. 

Another useful testing technique is the idea of a stub (method stubs, mock objects). To test 
one component of your system in isolation, you can create trivial implementations of the 
other components with which it is coupled. This might allow you to test your server without 
opening network connections, or to test your client backend with automated rather than GUI 

http://web.mit.edu/6.005/www/fa08/projects/guichat/lab-networking/lab.html
http://web.mit.edu/6.005/www/fa08/projects/guichat/lab-networking/lab.html
http://java.sun.com/products/jfc/tsc/articles/threads/threads1.html
http://en.wikipedia.org/wiki/Method_stub
http://en.wikipedia.org/wiki/Mock_object


Project 3: Instant Messaging 

tests. 

Implementation. Develop in iterations. Focus on important modules first, and defer making 
cosmetic improvements to your user interface until after all the code is well-organized and 
thoroughly tested. Make use of assertions. 


