
MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Little Languages

Rob Miller
Fall 2008

© Robert Miller 2008

Representing Code with Data
Consider a datatype representing language syntax
¾Formula is the language of propositional logic formulas
¾a Formula value represents program code in a data structure; i.e.

new And(new new And(new Var(Var(“xx”) new Var(“y”))
), new Var(y))

has the same semantic meaning as the Java code

x && y

¾but a Formula value is a first-class object

• first-class: a value that can be passed, returned, stored, manipulated
• the Java expression “x && y” is not first-class

Today’s Topics
Functionals
¾Objects representing executable code

Higher-order functions
¾F

 h

i h l¾Functiions that accept ff unctions as arguments or return them as results

Domain-specific languages
¾PCAP: primitives, combination, abstraction pattern

© Robert Miller 2008

Representing Code as Data
Recall the visitor pattern
¾A visitor represents a function over a datatype

• e.g. new SizeVisitor() represents size : List → int

public class SizeVisitor<E> implements ListVisitor<E,Integer> {
public Integer visit(Empty<E> l) { return 0; }
public Integer visit(Cons<E> l) { return 1 + l.rest().accept(this); }

}

A visitor represents code as a firstA visitor represents code as a first-class object, tooclass object, too

¾A visitor is an object that can be passed around, returned, and stored

¾But it’s also a function that can be invoked

Today’s lecture will see more examples of code as data
© Robert Miller 2008 © Robert Miller 2008

1

Today’s Problem: Music
Interesting music tends to have a lot of repetition
¾Let’s look at rounds, canons, fugues
¾A familiar simple round is “Row Row Row Your Boat”: one voice starts,

other voices enter after a delayother voices enter after a delay
Row row row your boat, gently down the stream, merrily merrily ...

Row row row your boat, gently down the stream...

¾Bach was a master of this kind of music
• Recommended reading: Godel Escher Bach, by Douglas Hofstadter

Recall our MIDI piano from early lectures
¾A song could be represented by Java code doing a sequence of calls on a

state machine:
machine.play(E); machine.play(D); machine.play(C); ...

¾We want to capture the code that operates this kind of machine as first-
class data objects that we can manipulate, transform, and repeat easily

© Robert Miller 2008

A Few of Music’s Operations
notes : String x Instrument → Music

requires string is in a subset of abc music notation

e.g. notes(“E D C D | E E E2 |”, PIANO)
abc notation
can also encode
sharps & flats,
higher/lower octaves 1 beat note 2-beat note

duration : Music → double

returns total duration of music in beats

e.g. duration(Concat(m1, m2)) = duration(m1) + duration(m2)

transpose : Music x int → Music

returns music with all notes shifted up or down in pitch by the given

number of semitones (i.e., steps on a piano keyboard)

play : Music → void

effects plays the music

all these operations also
have precondition that
parameters are non-null

© Robert Miller 2008

Music Data Type
Let’s start by representing simple tunes
Music = Note(duration:double, pitch:Pitch, instr:Instrument)

+ Rest(duration:double)
+ Concat((m1:Music, m2:Music))

¾duration is measured in beats
¾Pitch represents note frequency (e.g. C, D, E, F, G; essentially the keys on

the piano keyboard)
¾ Instrument represents the instruments available on a MIDI synthesizer

Design questions
¾ is this a tree or a list? what would it look like defined the other way?

¾what is the “empty” Music object?

• it’s usually good for a data type to be able to represent nothing
• avoid null

¾what are the rep invariants for Note, Rest, Concat?

© Robert Miller 2008

Implementation Choices
Creators can be constructors or factory methods
¾ Java constructors are limited: interfaces can’t have them, and constructor

can’t choose which runtime type to return
• new C() must always be an object of type C,new C() must always be an object of type C,
•	 so we can’t have a constructor Music(String, Instrument), whether

Music is an interface or an abstract class

Observers & producers can be methods or visitors
¾Methods break up function into many files; visitor is all in one place
¾Adding a method requires changing source of classes (not always possible)
¾Visitor keeps dependencies out of data type itself (e.g. MIDI dependence)
¾Method has direct access to private rep; visitor needs to use observers

Producers can also be new subclasses of the datatype
¾e.g. Music = ... + Transpose(m:Music, semitones:int)

¾Defers the actual evaluation of the function

¾Enables more sharing between values

© Robert Miller 2008

¾Adding a new subclass requires changing all visitors

2

-

Duality Between Interpreter and Visitor
Operation using interpreter pattern
¾Adding new operation is hard (must add a method to every existing class)
¾Adding new class is easy (changes only one place: the new class)

Operation using visitor patternOperation using visitor pattern
¾Adding new operation is easy (changes only one place: the new visitor)

¾Adding new class is hard (must add a method to every existing visitor)

© Robert Miller 2008

Simple Rounds
We need one more operation:

delay : Music x double → Music

delay(m, dur) = concat(rest(dur), m)

And now we can express Row Row Row Your BoatAnd now we can express Row Row Row Your Boat
rrryb = notes(“C C C3/4 D/4 E | E3/4 D/4 E3/4 F/4 G2 | ...”, PIANO)
together(rrryb, delay(rrryb, 4))
• Two voices playing together, with the second voice delayed by 4 beats

¾This pattern is found in all rounds, not just Row Row Row Your Boat

¾Abstract out the common pattern

round : Music x double x int → Music round : Music x double x int → Music
round(m, dur, n) =

together(m, round(delay(m, dur), dur, n-1))
m if n == 1

 if n > 1
¾The ability to capture a general pattern like round() is one of the

advantages of music as a first-class object rather than merely a sequence of
play() calls

© Robert Miller 2008

Multiple Voices
For a round, the parts need to be sung simultaneously
Music = Note(duration:double, pitch:Pitch, instr:Instrument)

+ Rest(duration:double)
+ Concat((m1:Music, m2:Music))
+ Together(m1:Music, m2:Music)

¾Here’s where our decision to make Concat() tree-like becomes very useful
•	 Suppose we instead had:

Concat = List<Note + Rest>

Together = List<Concat>

• What kinds of music would we be unable to express?

Composite pattern
¾The composite pattern means that groups of objects (composites) can be

treated the same way as single objects (primitives)

¾T = C1(... ,T) +...+ Cn(... ,T) + P1(...) +...+ Pm(...)

Music and Formula are
composite data types.

composites primitives © Robert Miller 2008

Distinguishing Voices
We want each voice in the round to be distinguishable
¾e.g. an octave higher, or lower, or using a different instrument
¾So these operations over Music also need to be first-class objects that

can be passed to round()can be passed to round()

¾Fortunately operations implemented as visitors already are objects

canon() applies a visitor to the repeated melody
canon : Music x double x Visitor<Music> x int → Music

e.g. canon(rrryb, 4, new TransposeVisitor(OCTAVE), 4)

produces 4 voices, each one octave higher than the last

canon() is a highercanon() is a higher-order functionorder function
¾A higher-order function takes a function as an argument or returns a

function as its result

© Robert Miller 2008

3

Functional Objects
Not all operations are visitors
¾Let’s generalize the idea of a music transformer function

interface UnaryFunction<T,U> {

U apply(T t);
U apply(T t);

}
¾An instance of UnaryFunction is a functional object, representing some

function f :T → U
¾For example:

new UnaryFunction<Music,Music>() {
public Music apply(Music m) { return delay(m, 4); }

}
¾ In general, we might want a delayer() method that produces a delay

transformer with an arbitrary delay (not just 4 beats):
delayer : int → UnaryFunction<Music,Music>

Music → Music

this anonymous class is
essentially a lambda expression
producing a functional object

note that delayer is a higher-
order function too that UnaryFunction represents © Robert Miller 2008

let’s write it this way, the abstract type

Repeating
A line of music can also be repeated by the same voice

repeat : Music x (Music → Music) x int → Music
e.g. repeat(rrryb, octaveHigher, 2) = concat(rryb, octaveHigher(rryb))

¾Note the similarity to counterpoint():

counterpoint: m together f(m) together ... together fn-1(m)

repetition: m concat f(m) concat ... concat fn-1(m)

¾And in other domains as well:

sum: x + f(x) + ... + fn-1(m)
() ()

product: x · f(x) · ... · fn-1(m)

Counterpoint
A canon is a special case of a more general pattern
¾Counterpoint is n voices singing related music, not necessarily delayed

counterpoint : Music x (Music → Music) x int → Music
¾¾Expressed as counterpoint a canon applies two functions to the music:Expressed as counterpoint, a canon applies two functions to the music:

delay and transform
canon(m, delay, f, n) = counterpoint(m, f ○ delayer(delay), n)

Another general pattern
function composition ○ : (U → V) x (T → U) → (T → V)

public static <T,U,V> UnaryFunction<T,V> compose(final UnaryFunction<U,V> g,p y p (y g
final UnaryFunction<T,U> f) {

return new UnaryFunction<T,V>() {
publicV apply(T t) { return g.apply(f.apply(t)); }

};
}

© Robert Miller 2008

Binary Functionals
We need first-class representation for binary operations
like together, concat, plus, times

interface BinaryFunction<T,U,V> {

V apply(T t U u);
V apply(T t, U u);

}

¾An instance of BinaryFunction represents some f :T x U → V

together: Music x Music → Music

concat: Music x Music → Music

Now we can capture the pattern
series :T x (T x T → T) x (T → T) x int → Tseries :T x (T x T → T) x (T → T) x int → T

initial value binary op f n
¾There’s a general pattern here, too; let’s capture it

counterpoint(m, f, n) = series(m, together, f, n)
repeat(m, f, n) = series(m, concat, f, n)

© Robert Miller 2008 © Robert Miller 2008

4

¾

t

Repeating Forever
Music that repeats forever is useful for canons

forever: Music → Music

play(forever(m)) plays m repeatedly, forever

d ti (f ()) +∞
duration(forever(m)) = +∞ double actually has a value for this:
Double.POSITIVE_INFINITY

Music = Note(duration:double, pitch:Pitch, instr:Instrument)
+ Rest(duration:double)
+ Concat(m1:Music, m2:Music)
+ Together(m1:Music, m2:Music)
+ Forever(m:Music)

why can’t we implement forever() using
repeat(), or any of the existinp g Music (), y g
subtypes?

¾Here’s the Row Row Row Your Boat round, forever:

canon (forever(rrryb), 4, octaveHigher, 4)

© Robert Miller 2008

Pachelbel’s Canon
(well, the first part of it, anyway...)

pachelbelBass = notes(“D,2 A,,2 | B,,2 ^F,, | ... |“, CELLO)

pachelbelMelody = notes(“^F’2 E’2 | D’2 ^C’2 | ... | ... | ... | ... | ... |“, VIOLIN)

pachelbelCanon = canon(forever(pachelbelMelody),

16,

identity,

3)

pachelbel = concat(pachelbelBass, accompany(pachelbelCanon,

pachelbelBass))

© Robert Miller 2008

Accompaniment

accompany: Music x Music → Music

repeats second piece until its length matches the first piece

melody line

bass line or drum line,

repeated to match melody’s length

accompany(m, b) =
ogether(m, reppeat(b,, identity,, duration(()m)/duration(b))) if duration(()m) finite g (, (y ()))

together(m, forever(b)) if duration(m) infinite

© Robert Miller 2008

Little Languages
We’ve built a new language embedded in Java
¾Music data type and its operations constitute a language for describing

music generation

¾ Instead of just solving one problem (like playing Row Row Row Your Boat), ¾ Instead of just solving one problem (like playing Row Row Row Your Boat),
build a language or toolbox that can solve a range of related problems (e.g.
Pachelbel’s canon)
¾This approach gives you more flexibility if your original problem turns out

to be the wrong one to solve (which is not uncommon in practice!)
¾Capture common patterns as reusable abstractions

Formula was an embedded language too
¾Formula combined with SAT solver is a powerful tool that solves a wide

range of problems

© Robert Miller 2008

5

Embedded Languages
Useful languages have three critical elements

Java Formula language Music language

Primitives 3, false Var, Bool notes, rest

Means of
Combination

+, *,
==, &&,
||, ...

and, or, not together,
concat,
transpose,
delay, …

Means of
Abstraction

variables,
methods,
classes

Java mechanisms functional objects +
Java mechanisms

¾6.01 calls this PCAP (the primitive-combination-abstraction pattern)

© Robert Miller 2008

Summary
Composite pattern
¾Composite data types allow a group of objects to be treated the same as a

single object

FunctionalsFunctionals
¾UnaryFunction and BinaryFunction represent functions as Java objects

¾So do Runnable and Visitor, in fact

Higher-order functions
¾Operations that take or return functional objects

Building languages to solve problems
h ibili¾¾A lA language has greater flfl exibility thhan a mere program, bbecause ii t can sollve

large classes of related problems instead of a single problem
¾ Interpreter pattern, visitor pattern, and higher-order functions are useful

for implementing powerful languages
¾But in fact any well-designed abstract data type is like a new language

© Robert Miller 2008

6

