
MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

6.005elements ofsoftwareconstruction
coding the photo organizer

Daniel Jackson

topics for today

how to implement an object model

‣ key idea: transform to allocate state
‣ basic patterns
‣ navigation direction
‣ derived components
‣ maintaining invariants

© Daniel Jackson 2008 2

starting point: object model

Album

UserDefined

subs

Photo

inserted,
photos

Root Selected

Image
!

Name name

!

!

File!

?
file

image?

additional constraints
‣ all albums reachable from root (implies acyclic)

Album in Root.*subs
‣ implicit photos are inserted photos plus photos in subalbums

all a: Album | a.photos = a.inserted + a.subs.photos

changes
‣ globally unique names; added File; renamed Collection to Album
© Daniel Jackson 2008 3

implementing the OM

basic strategy

object model can be implemented in many ways

‣ key issue: where state resides

eg, where does relation from A to B go?
‣ inside A object, or inside B object
‣ or inside a new singleton C object, as Map<A,B>
‣ or nowhere: compute on-the-fly

considerations
‣ ease & efficiency of navigation
‣ multiplicity (might call for collections)
‣ minimizing memory usage
‣ exploiting immutability
‣ minimizing dependences
© Daniel Jackson 2008 5

implementing sets

top-level sets become classes
‣ set as class: class Album {...}, class Photo {...}
‣ set as built-in class: Name as String

subset patterns
‣ subset as boolean field: 	class Photo {boolean selected;}
‣	 subset as singleton set: class Catalog {Set<Photo> selected;}

class Catalog {Album root;}

static subset patterns
‣ classification of object does not change over time
‣ subset as subclass: class	 Root extends Album {...}

© Daniel Jackson 2008	 6

example: Selected

Photo

Selected Set

Catalog

elts

!

Photo

selected
OR

Photo

Boolean

isSelected
!

© Daniel Jackson 2008 7

example: Root

Album

Root

OR

Album

Catalog

!
root

Album

Root

© Daniel Jackson 2008 8

implementing relations

basic patterns (function)
‣ relation as field: class Album {Name name;}
‣ relation as map: class Catalog {Map<Album, Name> name;}

basic patterns (one-to-many)
‣ relation as field: class Album {Set<Album> subs;}
‣ relation as map: class Catalog {Map<Album, Set<Album>> subs;}

how to choose?
‣ efficiency: relation as field uses marginally less time and space
‣ immutability: relation as map is preferable if Album otherwise immutable
‣ encapsulation: choose so that OM invariant can be a rep invariant

© Daniel Jackson 2008 9

example: name

OR

Album

!

Name

name
?

Album

!

String

name
?

Album

String

Catalog Map Entry
namemap

!

entries
key

val

!

!??

© Daniel Jackson 2008 10

example: subs

Album

UserDefined

!
subs

OR

Album

Set

subs
!

?
elts

Album

Set

Catalog Map Entry
subMap

!

entries
key

val

!

!??
elts

AlbumCatalog Map Entry
parentMap

!

entries
key

val

!

!
??

OR

© Daniel Jackson 2008 11

relation direction

navigation direction
‣	 direction of relation in object model is semantic
‣	 navigation direction depends on operations
‣	 for relation R: can implement R, transpose of R, or both

implementation must support navigation
‣	 consider inserted: Album -> Photo and operation add (a, p)
‣	 relation as field: class Album {Set<Album> insertedPhotos;}

or class Photo {Set<Collection> insertedInto;}
‣	 relation as map: class Catalog {Map<Album, Set<Photo>> insertedPhotos;}

or class Catalog {Map<Photo, Set<Album>> insertedInto;}
‣	 for basic add operation, implementing as Album -> Photo is fine
‣	 but if add operation removes photo from other collections,
will want both directions

© Daniel Jackson 2008	 12

derived components

derived component
‣	 a set or relation that can be derived from others
‣	 OM invariant has the form x = ...

in this case
‣	 can choose not to implement at all!
‣	 instead, construct value when needed

examples
‣	 UserDefined = Album - Root
so to determine if a in UserDefined, can just check a == Root

‣	 all a: Album | a.photos = a.inserted + a.subs.photos
so can compute photos set for given a by traversing subcollections

© Daniel Jackson 2008	 13

maintaining OM invariants

OM invariants
‣ called “integrity constraints” for databases
‣ become rep invariants or invariants across classes

to maintain
‣ reject inputs that might break invariant (eg, duplicate name for collection)
‣ or compensate for bad input (eg, modify name to make it unique)

to check
‣ insert repCheck methods and assertions for cross-class invariants

© Daniel Jackson 2008 14

decisions made

in implementing the photo organizer, we chose
‣	 subset as boolean field for Selected (in Thumbnail class)
‣	 relation as field for name (in Album class), since the relation is immutable
‣	 relation as map for subs and inserted (in Catalog class)
‣	 to implement subs in the direction of child to parent
(so getChildren method has to iterate-and-check to find children)

‣	 to compute UserDefined and photos on the fly

© Daniel Jackson 2008	 15

thumbnails
architecture of GUI may influence decisions
‣ regard selection and images as part of view, not model
‣ and want to avoid back-dependences of model on view

Photo

Selected

Image
!

File!

?
file

image

Photo

File

!
file

List

PreviewPane

thumbnails

Thumbnail

elts

Image
!image

Boolean

isSelected
!

photo! ? ?

!

?

© Daniel Jackson 2008 16

!nal code: catalog, album, etc

public class Catalog {

 private static final String ROOTNAME = "all photos";

 // root album, cannot be deleted

 private final Album root;

 // map from child album to parent

 private final Map<Album, Album> parent;

 // map from albums to photos that were explicitly inserted into them

 private final Map<Album, Set<Photo>> inserted;

}

public final class Album {

 private String name;

}

public class Photo {

 private final File file;

}

© Daniel Jackson 2008 17

!nal code: selected, etc

public class PreviewPane extends JScrollPane {

 private JPanel content;

 private List<Thumbnail> thumbnails;

}

public class Thumbnail extends JComponent {

 public static final int THUMBNAIL_SIZE = 150;

 private Photo photo;

 // the loaded, displayable thumbnail image

 private BufferedImage bufferedImage;

 private int width;

 private int height;

 private boolean isSelected;

© Daniel Jackson 2008 18

catalog rep invariant

 private void checkRep() {

 /*

 * 1) All fields are non-null

 * 2) The root has no parent; all other albums have one parent

 * all a: albums | parent.get(a) == null iff a == root

 * 3) Each album has a unique name

 * all a1, a2: albums | a1.equals(a2) or !a1.getName().equals(a2.getName())

 * 4) Map of inserted photos has all albums as keys

 * inserted.keySet() = parent.keySet() + root

 * where albums is the set of Album objects that are keys or values in the parent map

 */

 // checking rep (1)

 assert root != null: "root cannot be null!";

 assert parent != null: "parent cannot be null!";

 assert inserted != null: "inserted cannot be null!";

 // checking rep (2,4)

 assert parent.get(root) == null: "Root cannot have a parent!";

 Set<Album> a1 = new HashSet<Album>(inserted.keySet());

 Set<Album> a2 = new HashSet<Album>(parent.keySet());

 a2.add(root);

 assert a1.equals(a2) : "Inconsistent album sets!";

 // checking rep (3)

 Set<Album> x = new HashSet<Album>(inserted.keySet());

 for (Album a: x) {

 for (Album d: x) {

 assert (a == d || !a.getName().equals(d.getName())):

 "Albums exist with duplicate names";

 }

 }

© Daniel Jackson 2008 } 19

summary: principles

keep abstract model abstract
‣ relations are conceptual; no containment notion

implementation is OM transformation
‣ from abstract to code object model
‣ key decision: where state should reside

consider all criteria
‣ use built-in collections when possible
‣ consider navigation, encapsulation, immutability

© Daniel Jackson 2008 20

