
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology March 7, 2008
Professors Srini Devadas and Erik Demaine Handout 6

Quiz 1 Practice Problems

1 Asymptotic Notation

Decide whether these statements are True or False. You must briefly justify all your answers to
receive full credit.

1. If f(n) = Θ(g(n)) and g(n) = Θ(h(n)), then h(n) = Θ(f(n))

2. If f(n) = O(g(n)) and g(n) = O(h(n)), then h(n) = Ω(f(n))

3. If f(n) = O(g(n)) and g(n) = O(f(n)) then f(n) = g(n)

n
4. = Ω(n)

100

2 Handout 6: Quiz 1 Practice Problems

5. f(n) = Θ(n2), where f(n) is defined to be the running time of the program A(n):

def A(n):
atuple = tuple(range(0, n)) # a tuple is an immutable version of a

list, so we can hash it
S = set()
for i in range(0, n):

for j in range(i+1, n):
S.add(atuple[i:j]) # add tuple (i,...,j-1) to set S

2 Linked List Equivalence

Let S and T be two sets of numbers, represented as unordered linked lists of distinct numbers. All
you have are pointers to the heads of the lists, but you do not know the list lengths. Describe an
O(min {|S| , |T |})-expected-time algorithm to determine whether S = T . You may assume that
any operation on one or two numbers can be performed in constant time.

Handout 6: Quiz 1 Practice Problems 3

3 Hash Table Analysis

You are given a hash table with n keys and m slots, with the simple uniform hashing assumption
(each key is equally likely to be hashed into each slot). Collisions are resolved by chaining.
What is the probability that the first slot ends up empty?

4 Heaps

1. The sequence �20, 15, 18, 7, 9, 5, 12, 3, 6, 2� is a max-heap.
True False

Explain:

2. Where in a max-heap can the smallest element reside, assuming all elements are distinct?
Include both the location in the array and the location in the implicit tree structure.

3. Suppose that instead of using Build-Heap to build a max-heap in place, the Insert
operation is used n times. Starting with an empty heap, for each element, use Insert to
insert it into the heap. After each insertion, the heap still has the max-heap property, so after
n Insert operations, it is a max-heap on the n elements.

(i) Argue that this heap construction runs in O(n log n) time.

(ii) Argue that in the worst case, this heap construction runs in Ω(n log n) time.

4 Handout 6: Quiz 1 Practice Problems

5 Python and Asymptotics

1. Give an example of a built-in Python operation that does not take constant time in the size
of its input(s). What time does it take?

2. Since dictionary lookup takes constant expected time, one can output all n keys in a dictio
nary in sorted order in expected time O(n).
True False

Explain:

3. Write a recurrence for the running time T (n) of f(n), and solve that recurrence. Assume
that addition can be done in constant time.

def f(n):

if n == 1:

return 1

else:

return f(n-1)+f(n-1)

4. Write a recurrence for the running time of g(n), and solve that recurrence. Assume that
addition can be done in constant time.

def g(n):
if n == 1:

return 1
else:

x = g(n-1)
return x+x

5. Now assume addition takes time Θ(b) where b is the number of bits in the larger number.
Write a new recurrence for the running time of g(n), and solve that recurrence. Express your
final answer in Θ-notation.

Handout 6: Quiz 1 Practice Problems 5

6 Hashing

1. Given a hash table with more slots than keys, and collision resolution by chaining, the worst
case running time of a lookup is constant time.
True False

Explain:

2. Linear probing satisfies the assumption of uniform hashing.
True False

Explain:

3. Assume that m = 2r for some integer r > 1. We map a key k into one of the m slots using
the hash function h(k) = k mod m. Give one reason why this might be a poorly chosen
hash function.

