
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology April 2, 2008
Professors Srini Devadas and Erik Demaine Handout 9

Quiz 2 Practice Problems

1 True/False

Decide whether these statements are True or False. You must briefly justify all your answers to
receive full credit.

1. There exists a comparison sort of 5 numbers that uses at most 6 comparisons in the worst
case.
True False

Explain:

2. Heapsort can be used as the auxiliary sorting routine in radix sort, because it operates in
place.
True False

Explain:

2 Handout 9: Quiz 2 Practice Problems

3. If the DFS finishing time f [u] > f [v] for two vertices u and v in a directed graph G, and u
and v are in the same DFS tree in the DFS forest, then u is an ancestor of v in the depth first
tree.
True False

Explain:

4. Let P be a shortest path from some vertex s to some other vertex t in a graph. If the weight
of each edge in the graph is increased by one, P will still be a shortest path from s to t.
True False

Explain:

5. If an in-place sorting algorithm is given a sorted array, it will always output an unchanged
array.
True False

Explain:

3 Handout 9: Quiz 2 Practice Problems

6. [5 points] Dijkstra’s algorithm works on any graph without negative weight cycles.

True False

Explain:

7. [5 points] The Relax function never increases any shortest path estimate d[v].
True False

Explain:

4 Handout 9: Quiz 2 Practice Problems

2 Short Answer

1. What property of the Rubik’s cube graph made 2-way BFS more efficient than ordinary
BFS?

2. What is the running time of the most efficient deterministic algorithm you know for finding
the shortest path between two vertices in a directed graph, where the weights of all edges are
equal? (Include the name of the algorithm.)

3 Topological Sort
Another way of performing topological sorting on a directed acyclic graph G = (V, E) is to
repeatedly find a vertex of in-degree 0 (no incoming edges), output it, and remove it and all of
its outgoing edges from the graph. Explain how to implement this idea so that it runs in time
O(V + E). What happens to this algorithm if G has cycles?

Handout 9: Quiz 2 Practice Problems 5

4 Shortest Paths

Carrie Careful has hired Lazy Lazarus to help her compute single-source shortest paths on a large
graph. Lazy writes a subroutine that, given G = (V, E), a source vertex s, and a non-negative
edge-weight function w : E R, outputs a mapping d : V R such that d[v] is supposed to → →
be the weight δ(s, v) of the shortest-weight path from s to v (or ∞ if no such s → v path exists)

and also a function π : V (V ∪ {NIL}) such that π[v] is the penultimate vertex on one such

shortest path (or NIL if v =

→
s or v is unreachable from s).

Carrie doesn’t trust Lazarus very much, and wants to write a “checker” routine that checks the

output of Lazarus’s code (in some way that is more efficient than just recomputing the answer

herself).

Carrie writes a “checker” routine that checks the following conditions. (No need for her to check

that w(u, v) is always non-negative, since she creates this herself to pass to Lazarus.)

(i) d[s] = 0

(ii) π[s] = NIL

(iii) for all edges (u, v) : d[v] ≤ d[u] + w(u, v)

(iv) for all vertices v : if π[v] =� NIL, then d[v] = d[π[v]] + w(π[v], v)

(v) for all vertices v =� s : if d[v] < ∞, then π[v] =� NIL (equivalently: π[v] = NIL = ⇒ d[v] = ∞)

1. Show, by means of an example, that Carrie’s conditions are not sufficient. That is, Lazarus’s
code could output some d, π values that satisfy Carrie’s checker but for which d[v] =� δ(s, v)
for some v. (Hint: cyclic π values; unreachable vertices.)

2. How would you augment Carrie’s checker to fix the problem you identified in (a)?

6 Handout 9: Quiz 2 Practice Problems

3. You are given a connected weighted undirected graph G = (V, E, w) with no negative weight
cycles. The diameter of the graph is defined to be the maximum-weight shortest path in the
graph, i.e. for every pair of nodes (u, v) there is some shortest path weight δ(u, v), and the
diameter is defined to be max

(u,v)
{δ(u, v)}.

Give a polynomial-time algorithm to find the diameter of G. What is its running time? (Your
algorithm only needs to have a running time polynomial in |E| and |V | to receive full credit;
don’t worry about optimizing your algorithm.)

4. You are given a weighted directed graph G = (V, E, w) and the shortest path distances
δ(s, u) from a source vertex s to every other vertex in G. However, you are not given π(u)
(the predecessor pointers). With this information, give an algorithm to find a shortest path
from s to a given vertex t in O(V + E) time.

