Stored Energy and Simple Actuators

Outline

Magnetic-Field Actuators Electric-Field Actuator

Energy Balance

$$
i \cdot v
$$ electrical

$$
-f_{r} \frac{d r}{d t}
$$

mechanical

$$
\frac{d W_{s}(\lambda, r)}{d t}=\frac{\partial W_{s}}{\partial \lambda} \frac{d \lambda}{d t}+\frac{\partial W_{s}}{\partial r} \frac{d r}{d t}
$$

For magnetostatic system, $\mathrm{d} \lambda / \mathrm{dt}=0$ no electrical power flow ...

$$
\frac{d W_{s}}{d t}=-f_{r} \frac{d r}{d t} \quad \square \quad f_{r}=-\left.\frac{\partial W_{s}}{\partial r}\right|_{\lambda}
$$

Radial Force on the Solenoid (at a constant flux linkage, λ)

If we can find the stored energy, we can immediately compute the force...
.. Jets take all the things we know to put this together...

$$
\begin{array}{lll}
f_{r}=-\left.\frac{\partial W_{s}}{\partial r}\right|_{\lambda} \quad & W_{s}(\Phi, r)=\frac{1}{2} \frac{\lambda^{2}}{L} & L(r)=\frac{\mu_{o} N^{2} \pi r^{2}}{h} \\
& \text { true for any single coil } & \text { true for long solenoid }
\end{array}
$$

Stored Energy in Inductors

In the absence of mechanical displacement, ...

$$
W_{s}=\int P_{\text {elec }} d t=\int i v d t=\int i \frac{d \lambda}{d t} d t=\int i(\lambda) d \lambda
$$

For a linear inductor:

$$
i(\lambda)=\frac{\lambda}{L} \quad \square W_{s}=\int_{0}^{\lambda} \frac{\lambda^{\prime}}{L} d \lambda^{\prime}=\frac{\lambda^{2}}{2 L}
$$

Linear Machines: Solenoid Actuator

Assuming that H outside the solenoid is negligible $H=\frac{N i}{l}$ inside the solenoid $B_{\text {core }} \approx \mu H$ and $B_{a i r} \approx \mu_{o} H$

Example: Solenoid with a Core

- Inductance: $\lambda=B_{\text {core }} A N x / l+B_{\text {air }} A N(l-x) / l \equiv L(x) i$
- Force: $f=\frac{1}{2} i^{2} \frac{d L(x)}{d x}=\frac{1}{2} i^{2} N^{2} A \frac{\left(\mu-\mu_{o}\right)}{d^{2}}$

$$
W_{s}(\lambda, x)=\frac{\lambda^{2}}{2 L(x)}
$$

$$
L(x)=\frac{\mu_{0} A}{l-x}\left[N \frac{l-x}{l}\right]^{2}+\frac{\mu A}{x}\left[N \frac{x}{l}\right]^{2}
$$

$$
f=-\left(\frac{\partial W_{s}}{\partial x}\right)_{\lambda}=\frac{\lambda^{2} l^{2}\left(\mu-\mu_{0}\right)}{2 N^{2} A\left[\mu_{0}(l-x)+\mu x\right]^{2}}
$$

THE CORE IS PULLED INTO THE SOLENOID (FORCE ACTS TO INCREASE L)

Example: Differential Transformer

If the current in the hot wire is the same as the current in the neutral wire, the induced current in the secondary is zero.

Example: Differential Transformer

If some current is lost,
current in the secondary opens the solenoid switch.

Rotational Mechanics ... Motors \& Generators

The translational variables X and f become the rotational variables θ and T .

All else remains the same.

$$
f=\frac{1}{2} i^{2} \frac{d L(x)}{d x}
$$

$$
T=\frac{1}{2} i^{2} \frac{d L(\theta)}{d \theta}
$$

Rotating Machine: Variable-Reluctance Motor

Max inductance Min inductance

$$
L(\theta)=L_{0}+L_{2} \sin (2 \theta)
$$

$$
T=\frac{1}{2} i^{2} \frac{d L(\theta)}{d \theta}=L_{2} i^{2} \cos (2 \theta)
$$

THE ROTATING CORE IS PULLED INTO ALIGNMENT WTH THE STATIONARY CORE (AGAIN, THE FORCE ACTS TO MAXIMZE INDUCTANCE)

Image by Steve J ohnson
http:/ / www. flickr. com/ photos/ artbystevejohnson/ 4621636807/ on flickr

Magnetic Poetry

magnetic strontium ferrite, SrFe 12 O 19 , particles dispersed in the elastomer Hypalon

Domains (arrows indicate field direction)

Magnetic Poetry

$$
\begin{aligned}
f_{r}=-\frac{\partial W_{s}}{\partial d} \quad \frac{W_{s}}{V} & =\frac{1}{2} \mu_{o} H_{\text {gap }}^{2} \\
W_{s} & =(A d) \frac{1}{2} \frac{B_{\text {gap }}^{2}}{\mu_{o}}
\end{aligned}
$$

$$
\underbrace{\frac{f}{A}}_{\text {PRESSURE }}=\frac{B_{g a p}^{2}}{2 \mu_{o}}
$$

Ubiquitous Electrostatic Motors

Landing Tip

Energy Stored in
 Electric Fields

1. Begin with a neutral reference conductor, the charge reservoir. Its potential is zero, by definition.
2. Move charges from the reference conductor into free space, thereby creating an electric field and doing work in the process. The work is stored as potential energy in the electric fields.
3. Account for all the work done, and thereby derive the energy stored in the electric fields.
4. The argument directly extends to systems with multiple conductors (and dielectrics).

- The work done by moving charge- δq tó á location with potential U is $U \delta q$. More generally, the work done to make an incremental charge change to a charge density is

$$
\left.\begin{array}{l}
\delta w \\
\delta w
\end{array}\right) \iiint_{V} U \delta \rho d V
$$

- Gauss' Law $\Rightarrow \delta \rho=\nabla \cdot \delta \epsilon_{o} \vec{E} \Rightarrow$

$$
\begin{aligned}
\delta w & =\iiint_{V} U \nabla \cdot \delta \epsilon_{o} \vec{E} d V \\
& =\iiint_{V}\left[\nabla \cdot\left(U \delta \epsilon_{o} \vec{E}\right)-\delta \epsilon_{o} \vec{E} \cdot \nabla U\right] d V \\
& =\oint U \delta \epsilon_{o} \vec{E} \cdot d \vec{S}+\iiint_{V} \vec{E} \cdot \delta \epsilon_{o} \vec{E} d V
\end{aligned}
$$

ZERO!
ENERGY DENSITY [$\left.] / \mathrm{m}^{3}\right]$

$$
\frac{\delta W}{\delta V}=\vec{E} \cdot \epsilon_{o} \delta \vec{E} \Rightarrow \frac{W}{\text { Volume }}=\frac{1}{2} \epsilon_{o} E^{2}
$$

First Attempt at Estimating Forces

$$
\begin{array}{cc}
+\sigma & \epsilon_{o} E A=\sigma A \\
q=C v & E=\frac{\sigma}{\epsilon_{o}}
\end{array}
$$

$$
\begin{aligned}
f & =q E=\sigma A \frac{\sigma}{\epsilon_{O}} \\
& =q E=\frac{\sigma^{2} A}{\epsilon_{o}}=\epsilon_{o} E^{2} A
\end{aligned}
$$

...this analysis is wrong! Wrong answer! Why?

Second Try at Estimating Forces

If the capacitor plates have finite thickness, most of the charge density doesn' t see the peak field ... E

$$
f=\underbrace{\frac{1}{2} \frac{\sigma}{\epsilon_{o}}}_{\text {Avg. E }} \underbrace{\frac{\sigma}{\Delta}}_{\rho} \underbrace{\Delta A}_{V}=\frac{\sigma^{2} A}{2 \epsilon_{o}}=\frac{1}{2} \epsilon_{o} E^{2} A
$$

Third Try: Use the Energy Method Relate Stored Energy to Force

Lets use chain rule...

$$
\frac{d W_{s}(q, x)}{d t}=\frac{\partial W_{s}}{\partial q} \frac{d q}{d t}+\frac{\partial W_{s}}{\partial x} \frac{d x}{d t}
$$

This looks familiar...

$$
\begin{aligned}
\frac{d W_{s}}{d t} & =i \cdot v-f \frac{d x}{d t} \\
& =C \frac{d v}{d t} v-f \frac{d x}{d t}
\end{aligned}
$$

Comparing similar terms suggests...

$$
f=-\frac{\partial W_{s}}{\partial x}
$$

Stored Energy of a Capacitor

$$
\begin{aligned}
& P_{\text {elec }}=v \cdot i=v \cdot \frac{d q}{d t} \\
& W_{s}=\int P_{\text {elec }} d t=\int v \frac{d q}{d t} d t=\int v d q
\end{aligned}
$$

... where W_{s} is energy stored in the field of the capacitor at any instant in time

Third Try: Attractive Force Between Parallel Plates

CAPACITOR PLATES ARE PULLED TOWARDS EACH OTHER (FORCE ACTS TO INCREASE C)

$$
f=\square
$$

$$
f=\frac{1}{2} \epsilon_{o} E^{2} A
$$

How Strong is this Force?

The maximum electric field strength is limited by the electrostatic breakdown

Typically...

$$
E_{\max } \approx 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}}
$$

$$
\frac{f}{A}=\frac{1}{2} \epsilon_{o} E^{2} \approx \square
$$

For small gaps...
http:/ / www. flickr.com/photos/ 10154402@NO3/ 2840585154/ on flickr

Electron m thermalizes due to collisions

$$
\frac{f}{A}=\frac{1}{2} \epsilon_{o} E^{2} \approx
$$

CONSTANT FORCE ALONG DIRECTION OF MOTION (FORCE ACTS TO INCREASE C)

Gap Closing Electrostatic Actuators

Moderate force

$$
\sim \frac{1}{x^{2}}
$$

$C(y)=\frac{\epsilon_{o}(y w)}{d}$
$f(y)=\frac{\epsilon_{o}}{2} \frac{Q^{2}}{C^{2}} \frac{w}{d}$
Weak force

$$
\sim \frac{1}{d}
$$

Example: Linear Comb Drive

N -fold multiplication of force ...

$$
f=N \epsilon_{o} \frac{v^{2}}{2} \frac{w}{d}
$$

$$
(r)=\frac{q}{4 \pi \epsilon_{o} r}
$$

Hydrogen atom

Hydrogen ground state energy is -13.6 eV

If the hydrogen radius was twice as long, what would be the ground state energy ?

Electrostatic vs Magnetostatic Actuators

MAGNETIC

$$
\frac{f}{A}=\frac{W_{S}}{V}=\frac{1}{2} \mu H \cdot H
$$

	Max Field	$\frac{W_{s}}{V}$
Magnetic	$H_{\max } \approx 1 \mathrm{~T}$	$400 \mathrm{~kJ} / \mathrm{m}^{3}$
Electric (Macro)	$E_{\max } \approx 10^{6} \frac{\mathrm{~V}}{\mathrm{~m}}$	$4.4 \mathrm{~J} / \mathrm{m}^{3}$
Electric (Micro)	$E_{\max } \approx 10^{8} \frac{\mathrm{~V}}{\mathrm{~m}}$	$44 \mathrm{~kJ} / \mathrm{m}^{3}$
Electric (Bio/ Nano)	$E_{\max } \approx 10^{9} \frac{\mathrm{~V}}{\mathrm{~m}}$	$4.4 \mathrm{MJ} / \mathrm{m}^{3}$
Gasoline		$38 \mathrm{GJ} / \mathrm{m}^{3}$

$$
\epsilon_{o}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}
$$

KEY TAKEAWAYS

Energy method for calculating Forces calculated at constant flux linkage

$$
f_{r}=-\frac{\partial W_{s}}{\partial r}
$$

$\begin{aligned} & \text { Radial force } \\ & \text { for an inductor }\end{aligned} f_{r}=-\frac{\partial W_{s}}{\partial r}=-\frac{\partial}{\partial r}\left(\frac{1}{2} \frac{\lambda^{2}}{L}\right)=\frac{1}{2} \frac{\lambda^{2}}{L^{2}} \frac{\partial L}{\partial r}=\frac{1}{2} i^{2} \frac{\partial L}{\partial r}$
FORCE ACTS TO INCREASE INDUCTANCE, L

$$
W_{s}=\int_{0}^{\lambda} \frac{\lambda^{\prime}}{L} d \lambda^{\prime}=\frac{\lambda^{2}}{2 L}
$$

FORCE ACTS TO INCREASE CAPACITANCE, C

$$
\begin{aligned}
& C(x)=\frac{\epsilon_{o} A}{x} \\
& f=-\frac{v^{2}}{2} \frac{\epsilon_{o} A}{x^{2}}
\end{aligned}
$$

$$
\text { Moderate force } \quad \sim \frac{1}{x^{2}}
$$

$$
\begin{array}{ll}
\square \square(y) & =\frac{\epsilon_{o}(y w)}{d} \\
f(y)=\frac{\epsilon_{o}}{2} \frac{Q^{2}}{C^{2}} \frac{w}{d}
\end{array}
$$

$$
\text { Weak force } \quad \sim \frac{1}{d}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to Lasers

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

