EM Reflection \& Transmission in Layered Media

Reading - Shen and Kong - Ch. 4

Outline

- Review of Reflection and Transmission
- Reflection and Transmission in Layered Media
- Anti-Reflection Coatings
- Optical Resonators
- Use of Gain

TRUE or FALSE

$$
\begin{aligned}
r & =\frac{E_{o}^{r}}{E_{o}^{i}}=\frac{n_{1}-n_{2}}{n_{1}+n_{2}} \\
t & =\frac{E_{o}^{t}}{E_{o}^{i}}=\frac{2 n_{1}}{n_{1}+n_{2}}
\end{aligned}
$$

1. The refractive index of glass is approximately $n=1.5$ for visible frequencies. If we shine a 1 mW laser on glass, more than 0.5 mW of the light will be transmitted.

Reflection \& Transmission of EM Waves at Boundaries

Animation © Dr. Dan Russell, Kettering University. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Additional J ava simulation at http:/ / phet. colorado. edu/ new/ simulations/

Incident EM Waves at Boundaries

$$
\begin{array}{|ll}
\hline \text { Incident Wave Known } & k_{1}=\omega \sqrt{\epsilon_{1}} \\
\vec{E}_{i}=\hat{x} E_{o}^{i} e^{-j k_{1} z} & \\
\vec{H}_{i}=\frac{1}{\eta_{1}} \hat{z} \times \vec{E}_{i}=\hat{y} \frac{1}{\eta_{1}} E_{o}^{i} e^{-j k_{1} z} & \eta_{1}=\sqrt{\frac{\mu_{1}}{\epsilon_{1}}}
\end{array}
$$

Reflected EM Waves at Boundaries

$$
\begin{gathered}
\text { Reflected Wave } \quad \vec{E}_{r}=\hat{x} E_{o}^{r} e^{+j k_{1} z} \\
\vec{H}_{r}=\frac{1}{\eta_{1}}(-\hat{z}) \times \vec{E}_{r}=-\hat{y} \frac{E_{o}^{r}}{\eta_{1}} e^{+j k_{1} z}
\end{gathered}
$$

Transmitted EM Waves at Boundaries

Reflection \& Transmission of EM Waves at Boundaries

$$
\begin{aligned}
& \vec{E}_{1}=\vec{E}_{i}+\vec{E}_{r} \\
& =\hat{x}\left(E_{o}^{i} e^{-j k_{1} z}+E_{o}^{r} e^{+j k_{1} z}\right) \\
& \vec{H}_{2}=\vec{H}_{t} \\
& =\widehat{x} E_{o}^{t} e^{-j k_{2} z} \\
& \text { Medium } 2 \\
& \vec{H}_{2}=\vec{H}_{r} \\
& =\widehat{y} \frac{E_{o}^{t}}{\eta_{2}} e^{-j k_{2} z} \\
& \vec{H}_{1}=\vec{H}_{i}+\vec{H}_{r} \\
& =\widehat{y}\left(\frac{E_{O}^{i}}{\eta_{1}} e^{-j k_{1} z}-\frac{E_{O}^{r}}{\eta_{1}} e^{+j k_{1} z}\right) \\
& \begin{array}{l}
\bar{E}_{1(z=0)}=\bar{E}_{2(z=0)} \\
\bar{H}_{1(z=0)}=\bar{H}_{2(z=0)}
\end{array}
\end{aligned}
$$

Reflectivity \& Transmissivity of Waves

- Define the reflection coefficient as

$$
r=\frac{E_{o}^{r}}{E_{o}^{i}}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}=\frac{n_{1}-n_{2}}{n_{1}+n_{2}}
$$

- Define the transmission coefficient as

$$
t=\frac{E_{o}^{t}}{E_{o}^{i}}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}=\frac{2 n_{1}}{n_{1}+n_{2}}
$$

Thin Film Interference

Image by Yoko Nekonomania http:/ / www. flickr. com/ photos/ nekonomania/ 4827035737/ on flickr

Reflection \& Transmission in Layered Media

Medium $1\left(k_{1}, \eta_{1}\right)$	Medium $2\left(k_{2}, \eta_{2}\right)$	Medium $3\left(k_{3}, \eta_{3}\right)$
Incident \rightarrow Reflected \leftarrow	Forward \rightarrow Backward \leftarrow	Transmitted \rightarrow

Incident: $\quad E_{i} e^{-j k_{1} z}$
Reflected: $\quad E_{r} e^{+j k_{1} z}$
Forward: $\quad E_{f} e^{-j k_{2} z}$
Backward: $\quad E_{b} e^{+j k_{2}(z-L)}$
Transmitted: $\quad E_{t} e^{-j k_{3}(z-L)}$

$$
H_{ \pm}= \pm E_{ \pm} / \eta
$$

$$
\begin{aligned}
k & \equiv \omega \sqrt{\epsilon \mu} \\
\eta & \equiv \sqrt{\frac{\mu}{\epsilon}}
\end{aligned}
$$

Reflection \& Transmission in Layered Media

Apply boundary conditions ...

- E at $z=0 \rightarrow E_{i}+E_{r}=E_{f}+E_{b}$
- H at $z=0 \rightarrow E_{i} / \eta_{1}-E_{r} / \eta_{1}=E_{f} / \eta_{2}-E_{b} / \eta_{2}$
- E at $z=L \rightarrow E_{f} e^{-j k_{2} L}+E_{b} e^{+j k_{2} L}=E_{t} e^{-j k_{3} L}$
- H at $z=L \rightarrow E_{f} e^{-j k_{2} L} / \eta_{2}-E_{b} e^{+j k_{2} L} / \eta_{2}=E_{t} e^{-j k_{3} L} / \eta_{3}$
- ... and solve for E_{r}, E_{f}, E_{b} and E_{t} as functions of E_{i}.

Could "easily" be extended to more layers.

Reflection by Infinite Series

Transmission by Infinite Series

Is Zero Reflection Possible?

One could solve for conditions under which ...

- $E_{r}=0 \quad$...no reflected wave
- $\left|E_{t}\right|^{2} / \eta_{3}=\left|E_{i}\right|^{2} / \eta_{1} \quad$...transmitted wave carries incident power
and then determine conditions on L and η_{2} for which there is no reflection, for example. This would yield the design of an antireflection coating.

Or, one could use generalized impedances ...

Tooryis sump

GPS

The Global Positioning System (GPS) is a constellation of 24 Earth-orbiting satellites. The orbits are arranged so that at any time, anywhere on Earth, there are at least four satellites "visible" in the sky. GPS operations depend on a very accurate time reference; each GPS satellite has atomic clocks on board.

Image by ines saraiva http://www flickr.com/ photos/inessaraiva/4006000559/ on flickr

Galileo - a global system being developed by the European Union and other partner countries, planned to be operational by 2014 Beidou - People's Republic of China's regional system, covering Asia and the West Pacific
COMPASS - People's Republic of China's global system, planned to be operational by 2020
GLONASS - Russia's global navigation system

Reflection and Transmission by an Infinite Series

Generalized Impedance

Define a spatially-dependent impedance
$\eta(z)=-\frac{E(z)}{H(z)}$

In region $1(z<0)$ we have
$\eta_{1}(z)=\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}} \frac{e^{-j k z}+r e^{j k z}}{e^{-j k z}-r e^{j k z}}$

In region $2(z>0)$ we have
$\eta_{2}(z)=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}$

Generalized Impedance

The incident wave in region 1 now sees an impedance of regions 2 and 3:
$\eta(-d)=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}} \frac{e^{j k_{2} d}+r_{23} e^{-j k_{2} d}}{e^{j k_{2} d}-r_{23} e^{-j k_{2} d}}$
Reflection of incident wave can be eliminated if we match impedance $\eta(-d)=\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}$

Matching Impedances

We need
$\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}} \frac{e^{j k_{2} d}+r_{23} e^{-j k_{2} d}}{e^{j k_{2} d}-r_{23} e^{-j k_{2} d}}=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}} \frac{1+r_{23} e^{-2 j k_{2} d}}{1-r_{23} e^{-2 j k_{2} d}}$

For lossless material, ε and μ are real, so only choices are $e^{2 j k_{2} d}= \pm 1$

Choose -1 and obtain \ldots requires $d=\lambda / 4 n_{2}$
$\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}} \frac{1-r_{23}}{1+r_{23}}$

Matching Impedances

Consider impedance at $z=0$
$\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}} \frac{1+r_{23}}{1-r_{23}}=\sqrt{\frac{\mu_{3}}{\varepsilon_{3}}} \Rightarrow \frac{1+r_{23}}{1-r_{23}}=\sqrt{\frac{\mu_{3}}{\varepsilon_{3}}} \sqrt{\frac{\varepsilon_{2}}{\mu_{2}}}$

So, we can eliminate the reflection as long as

$$
\begin{aligned}
\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}\left(\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}} \sqrt{\frac{\varepsilon_{3}}{\mu_{3}}}\right) \Rightarrow \frac{\mu_{2}}{\varepsilon_{2}} & =\sqrt{\frac{\mu_{1}}{\varepsilon_{1}} \frac{\mu_{3}}{\varepsilon_{3}}} \\
\eta_{2} \cdot \eta_{2} & =\eta_{1} \cdot \eta_{3} \\
\left(n_{2}\right)^{2} & =n_{1} n_{3}
\end{aligned}
$$

Anti-reflection Coating

wavelength

Image is in the public domain

Everyday Anti-Reflection Coatings

Transmission Again

Transmitted Wave from a few slides ago

$$
E_{t}=\frac{E_{i} t_{21} t_{12} e^{-j k_{2} L}}{1-r_{21} r_{21} e^{-j 2 k_{2} L}}
$$

Fabry-Perot Resonance

$$
t=\frac{t_{12} t_{21} e^{-j k L}}{1-r_{12} r_{21} e^{-2 j k L}}
$$

Fabry-Perot Resonance: $\quad e^{-2 j k_{2} L}=1 \quad$ maximum transmission

$$
e^{-2 j k_{2} L}=-1 \quad \text { minimum reflection }
$$

Resonators with Internal Gain

What if it was possible to make a material with "negative absorption" so the field grew in magnitude as it passed through a material?

$$
\frac{E_{t}}{E_{i}}=\frac{\tilde{t}_{1} \tilde{t}_{2} e^{-j \tilde{k} L}}{1-\tilde{r}_{1} \tilde{r}_{2} e^{-2 j \tilde{k} L}}=\frac{\tilde{t}_{1} \tilde{t}_{2} e^{-j k_{r} L} e^{-g L}}{1-\tilde{r}_{1} \tilde{r}_{2} e^{-2 j k_{r} L} e^{-2 g L}}
$$

Resonance:
$e^{2 j k L}=1$

Laser Using Fabre-Perot Cavity

Resonant modes

Image is in the public domain

Key Takeaways

Reflection and Transmission by an Infinite Series

$$
\begin{aligned}
E_{r} & =E_{i}\left(r_{21}+t_{21} r_{23} t_{12} \Gamma^{2}\left(1+r_{21} r_{23} \Gamma^{2}+r_{21}^{2} r_{23}^{2} \Gamma^{4} \ldots\right)\right) \\
& =E_{i}\left(r_{21}+t_{21} r_{23} t_{12} \Gamma^{2} /\left(1-r_{21} r_{23} \Gamma^{2}\right)\right) \\
E_{t} & =E_{i}\left(t_{23} t_{12} \Gamma\left(1+r_{21} r_{23} \Gamma^{2}+r_{21}^{2} r_{23}^{2} \Gamma^{4} \ldots\right)\right) \\
& \left.=E_{i} t_{23} t_{21} \Gamma /\left(1-r_{21} r_{23} \Gamma^{2}\right)\right)
\end{aligned}
$$

Anti-reflective coatings by impedance matching:

$$
\begin{aligned}
& d=\lambda / 4 n_{2} \\
& \left(n_{2}\right)^{2}=n_{1} n_{3}
\end{aligned}
$$

Fabry-Perot Resonance

MIT OpenCourseWare
|http://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to Lasers

Spring 2011

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

