Refraction and Snell's Law

Reading - Shen and Kong - Ch. 4

Outline

- TE and TM fields
- Refraction and Snell's Law:
- FromTE analysis
- From Phase Matching

Image in the Public Domain

Willebrord Snellius

(1580-1626) was a
Dutch astronomer and mathematician

- From Fermat's Principle of Least Time
- Total Internal Reflection and Fibers
- FIOS

Refraction

Water Waves

Waves refract at the top where the water is shallower

Refraction involves a change in the direction of wave propagation due to a change in propagation speed. It involves the oblique incidence of waves on media boundaries, and hence wave propagation in at least two dimensions.

Oblique Incidence at Dielectric Interface

Transverse Electric Field

Transverse Magnetic Field

Partial TE Analysis

$$
\begin{aligned}
\vec{E}_{i} & =\hat{y} E_{o}^{i} e^{-j k_{i x} x-j k_{i z} z} \\
\vec{E}_{r} & =\hat{y} E_{o}^{r} e^{-j k_{r x} x+j k_{r z} z} \\
\vec{E}_{t} & =\hat{y} E_{o}^{t} e^{-j k_{t x} x-j k_{t z} z} \\
\omega_{i} & =\omega_{r}=\omega_{t}
\end{aligned}
$$

Tangential E must be continuous at the boundary $\underline{z=0}$ for all x and for t.

$$
E_{o}^{i} e^{-j k_{i x}}+E_{o}^{r} e^{-j k_{r x} x}=E_{o}^{t} e^{-j k_{t x} x}
$$

This is possible if and only if $k_{i x}=k_{r x}=k_{t x}$ and $\omega_{i}=\omega_{r}=\omega_{t}$
The former condition is phase matching $k_{i x}=k_{r x}=k_{t x}$

Snell's Law

$$
k i x=k_{r x}
$$

$n_{1} \sin \theta_{i}=n_{1} \sin \theta_{r}$

$$
\theta_{i}=\theta_{r}
$$

$k i x=k_{t x}$
$n_{1} \sin \theta_{i}=n_{2} \sin \theta_{t}$
SNELL'S LAW

Snells Law via Phase Matching

Following phase continuity, the phase-front separation L is common to both the incident and transmitted, or refracted, waves.

$$
\begin{gathered}
L \sin \left(\theta_{i}\right)=\lambda_{1}=v_{p 1}(2 \pi / \omega) \quad L \sin \left(\theta_{t}\right)=\lambda_{2}=v_{p 2}(2 \pi / \omega) \\
\sin \left(\theta_{1}\right) / \sin \left(\theta_{2}\right)=v_{p 1} / v_{p 2}=n_{2} / n_{1}
\end{gathered}
$$

Snell's Law Diagram

Tangential E field is continuous ...

$$
E_{o}^{i} e^{-j k_{i x}}+E_{o}^{r} e^{-j k_{r x} x}=E_{o}^{t} e^{-j k_{t x} x}
$$

$$
k_{i x}=k_{t x}
$$

$n_{1} \sin \theta_{i}=n_{2} \sin \theta_{t}$

Refraction in Suburbia

Think of refraction as a pair of wheels on an axle going from a sidewalk onto grass. The wheel in the grass moves slower, so the direction of the wheel pair changes.

Snell's Law and Lenses

Image by MIT OpenCourseWare.

History of Snell's Law

- Snell's Law describing refraction was first recorded by Ptolemy in 140 A.D
- First described by relationship by Snellius in 1621
- First explained in 1650 by Fermat's principle of least time.

EXAMPLES:

BEAM OF LIGHT IS OFFSET AS IT PASSES THROUGH A TRANSPARENT BLOCK

MRAGE

FOCUSING OPTICAL SYSTEM

NEAR THE HORIZON, THE APPARENT SUN IS HIGHER THAN THE TRUE SUN BY ABOUT ½ DEGREE

Fermat's Principle of Least Time

Fermat's principle of minimum time argues that light will travel from one point to another along a path that requires the minimum time.

Applied to Reflection

Since it is straight, the blue path is the shortest path from A to B^{\prime}. So, the blue path is also the shortest reflecting path to B since it images the path to B^{\prime}. For the blue path, the incidence and reflection angles equal.

Fermat's Principle of Least Time

Refraction

$$
t=\frac{\sqrt{x_{1}^{2}+y_{1}^{2}}}{v_{1}}+\frac{\sqrt{\left(\left(L-x_{1}\right)^{2}+y_{2}^{2}\right)}}{v_{2}}
$$

From $d t / d x_{1}=0$, it follows that

$$
\frac{x_{1} v_{1}}{\sqrt{\left(x_{1}^{2}+y_{1}^{2}\right)}}=\frac{x_{2} v_{2}}{\sqrt{\left(\left(L-x_{1}\right)^{2}+y_{2}^{2}\right)}}
$$

Total Internal Reflection

Beyond the critical angle, θ_{c}, a ray within the higher index medium cannot escape at shallower angles

$$
n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1} \quad \theta_{c}=\sin ^{-1}\left(n_{1} / n_{2}\right)
$$

For glass, the critical internal angle is 42°
For water, it is 49°

Image is in the public domain

Snell's Law Diagram

Tangential E field is continuous ... $k_{i x}=k_{t x}$

Refraction

Total Internal Reflection

Applications of Total Internal Reflection

Critical angle (diamond/ air interface): $\sin ^{-1}\left(n_{2} / n_{1}\right)=\sin ^{-1}(1 / 2.42) \sim 24^{\circ}$ Critical angle (glass/ air interface) is: $\sim 42^{\circ}$

Diamonds sparkle as light bounces inside them multiple times due to the high index of refraction

Total Internal Reflection in Suburbia

Moreover, this wheel analogy is mathematically equivalent to the refraction phenomenon. One can recover Snell's law from it: $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$.

The upper wheel hits the sidewalk and starts to go faster, which turns the axle until the upper wheel re-enters the grass and wheel pair goes straight again

Wavequide Transports Light Between Mirrors

Metal waveguides

So what kind of waveguide are the optical fibers ?

Image by Dan Tentler http:/ / www. flickr.com/ photos/ vissago/ 4634464205/ on flickr

Optical Fibers

Fiber to the Home

An ONT (Optical Network Terminal) is a media converter that is installed by Verizon either outside or inside your premises, during FiOS installation. The ONT converts fiber-optic light signals to copper/ electric signals. Three wavelengths of light are used between the ONT and the OLT (Optical Line Terminal):

- $\lambda=1310 \mathrm{~nm}$ voice/ data transmit
- $\lambda=1490 \mathrm{~nm}$ voice/ data receive
- $\lambda=1550 \mathrm{~nm}$ video receive

Each ONT is capable of delivering:
Multiple POTS (plain old telephone service) lines, Internet data, Video

Image by Raj from Chennai, India http:/ / commons. wikimedia. org/ wiki/ File:Strings of lights.ipg on Wikimedia Commons

Fiber to the Home

Image by uuzinger
http:/ / www. flickr.com/ photos/ uuzinger/ 411425461/ on flickr

Image by uuzinger
http:/ / www. flickr.com/ photos/ uuzinger/ 411425452/ on flickr

Bandwidths \& Services

- Channels downstream to each home
$\lambda=1490$ and $\lambda=1550 \mathrm{~nm}$
- Channel upstream from each home
$\lambda=1310 \mathrm{~nm}$

Image of ONT by J osh Bancroft
http:/ / www. flickr. com/ photos/ i oshb/ 87167324/ on flickr

Optical Assembly

- Channels downstream to each home
$\rightarrow \lambda=1490$ and $\lambda=1550 \mathrm{~nm}$
- Channerlupstream from each home
- $\lambda=1310 \mathrm{~nm}$

Separating Wavelengths

Fabry-Perot Resonance

$$
t=\frac{t_{12} t_{21} e^{-j k L}}{1-r_{12} r_{21} e^{-2 j k}}
$$

Fabry-Perot Resonance: $\max \left\{e^{-2 j k_{2} L}\right\}=1 \quad$ maximum transmission

$$
\min \left\{e^{-2 j k_{2} L}\right\}=-1 \quad \text { minimum transmission }
$$

General concept of a MEMS Fabry-Perot filter formed on a detector
(by applying voltage between the top and bottom mirror the distance L between the mirrors can be adj usted)

General concept of a

 Mach-Zehnder Modulator(phase shifters change the phase of the light beam in one of the waveguide arms with respect to the other beam, so that they can constructively or destructively interfere)

MIT OpenCourseWare
|http://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to Lasers

Spring 2011

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

