# Fresnel Equations and EM Power Flow 

Reading - Shen and Kong - Ch. 4

## Outline

- Review of Oblique Incidence
- Review of Snell's Law
- Fresnel Equations
- Evanescence and TIR
- Brewster's Angle
- EM Power Flow


## TRUE / FALSE

1. This EM wave is TE (transverse electric) polarized:
2. Snell’ s Law only works for


TE polarized light. $\qquad$
3. Total internal reflection only occurs when light goes from a high index material to a low index material.

## Refraction

Water Waves


Waves refract at the top where the water is shallower

Refraction involves a change in the direction of wave propagation due to a change in propagation speed. It involves the oblique incidence of waves on media boundaries, and hence wave propagation in at least two dimensions.

## Refraction in Suburbia

Think of refraction as a pair of wheels on an axle going from a sidewalk onto grass. The wheel in the grass moves slower, so the direction of the wheel pair changes.


## Total Internal Reflection in Suburbia

Moreover, this wheel analogy is mathematically equivalent to the refraction phenomenon. One can recover Snell's law from it: $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$.


The upper wheel hits the sidewalk and starts to go faster, which turns the axle until the upper wheel re-enters the grass and wheel pair goes straight again.

## Oblique Incidence (3D view)


$\mathrm{k}_{\mathrm{ix}}=\mathrm{k}_{\mathrm{i}} \sin \left(\theta_{\mathrm{i}}\right)$
$\mathrm{k}_{\mathrm{iz}}=\mathrm{k}_{\mathrm{i}} \cos \left(\theta_{\mathrm{i}}\right)$
Identical definitions for $\mathrm{k}_{\mathrm{r}}$ and $\mathrm{k}_{\mathrm{t}}$

## Oblique Incidence at Dielectric Interface



Transverse Electric Field

Transverse Magnetic Field

Why do we consider only these two polarizations?

## Partial TE Analysis



$$
\begin{aligned}
& \overrightarrow{\boldsymbol{E}}=\overrightarrow{\boldsymbol{E}}_{\boldsymbol{o}} \boldsymbol{e}^{\boldsymbol{j}(\omega \boldsymbol{t}-\overrightarrow{\boldsymbol{k}} \cdot \overrightarrow{\boldsymbol{r}})} \\
& \omega_{i}=\omega_{r}=\omega_{t} \\
& \vec{E}_{i}=\hat{y} E_{o}^{i} e^{-j k_{i x} x-j k_{i z} z} \\
& \vec{E}_{r}=\hat{y} E_{o}^{r} e^{-j k_{r x} x+j k_{r z} z} \\
& \vec{E}_{t}=\hat{y} E_{o}^{t} e^{-j k_{t x} x-j k_{t z} z}
\end{aligned}
$$

Tangential E must be continuous at the boundary $\mathrm{z}=0$ for all x and for t .

$$
E_{o}^{i} e^{-j k_{i x}}+E_{o}^{r} e^{-j k_{r x} x}=E_{o}^{t} e^{-j k_{t x} x}
$$

This is possible if and only if $\mathrm{k}_{\mathrm{ix}}=\mathrm{k}_{\mathrm{tx}}=\mathrm{k}_{\mathrm{tx}}$ and $\omega_{\mathrm{i}}=\omega_{\mathrm{r}}=$ $\omega_{\mathrm{t}}$. The former condition is phase matching.

## Snell's Law Diagram

Tangential E field is continuous ... $k_{i x}=k_{t x}$

Refraction


## Total Internal Reflection



## Snell' s Law



$$
k i x=k_{r x}
$$

$n_{1} \sin \theta_{i}=n_{1} \sin \theta_{r}$
$\theta_{i}=\theta_{r}$
$k i x=k_{t x}$
$n_{1} \sin \theta_{i}=n_{2} \sin \theta_{t}$
Snell' s Law

## TE Analysis - Set Up



$$
\begin{aligned}
& k_{x}^{2}+k_{z}^{2}=k^{2}=\omega^{2} \mu \epsilon \\
& k_{x}=k \sin \theta \\
& k_{z}=k \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
& \vec{E}_{i}=\hat{y} E_{o} e^{j\left(-k_{i x} x-k_{i z} z\right)} \\
& \vec{E}_{r}=\hat{y} r E_{o} e^{j\left(-k_{i x} x+k_{i z} z\right)} \\
& \vec{E}_{t}=\hat{y} t E_{o} e^{j\left(-k_{i x} x-k_{i z} z\right)}
\end{aligned}
$$

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \mu \vec{H}}{\partial t}
$$

$$
-j k \times \vec{E}=-j \omega \mu \vec{H} \quad \text { To get } H, \text { use }
$$

$$
\vec{H}=\frac{1}{\omega \mu} k \times \vec{E}
$$

Faraday's
Law

$$
\vec{H}_{i}=\left(\hat{z} k_{i x}-\hat{x} k_{i z}\right) \frac{E_{o}}{\omega \mu_{1}} e^{j\left(-k_{i x} x-k_{i z} z\right)}
$$

$$
\vec{H}_{r}=\left(\hat{z} k_{i x}+\hat{x} k_{i z}\right) \frac{r E_{o}}{\omega \mu_{1}} e^{j\left(-k_{i x} x+k_{i z} z\right)}
$$

$$
\vec{H}_{t}=\left(\hat{z} k_{t x}+\hat{x} k_{t z}\right) \frac{t E_{o}}{\omega \mu_{2}} e^{j\left(-k_{t x} x-k_{t z} z\right)}
$$

## TE Analysis - Boundary Conditions

Incident Wavenumber: $k_{i}^{2}=k_{r}^{2}=\omega^{2} \mu \epsilon$
Phase Matching: $\quad k_{i x}=k_{r x}=k_{t x}$

$$
\theta_{r}=\theta_{i}
$$

$$
k_{i} \sin \theta_{i}=k_{t} \sin \theta_{t}
$$

Tangential E: $\quad 1+r=t$
Normal $\mu \mathrm{H}: \quad 1+r=t$
Tangential H: $\quad \frac{E_{o}}{\omega \mu_{i}}(1-r) k_{i t z}=\frac{t E_{o}}{\omega \mu_{t}} k_{i t z}$

$$
(1-r)=t \frac{\sqrt{\mu_{t} \varepsilon_{t}}}{\sqrt{\mu_{i} \varepsilon_{i}}} \frac{\mu_{i}}{\mu_{t}} \frac{\cos \theta_{t}}{\cos \theta_{i}}=t \frac{\eta_{i}}{\eta_{t}} \frac{\cos \theta_{t}}{\cos \theta_{i}}
$$

Solution Boundary conditions are:
$1+r=t$
$1-r=t \frac{\eta_{i}}{\eta_{t}} \frac{\cos \theta_{t}}{\cos \theta_{i}}$
$t=\frac{2 \eta_{t} \cos \theta_{i}}{\eta_{t} \cos \theta_{i}+\eta_{i} \cos \theta_{t}}$
$r=\frac{\eta_{t} \cos \theta_{i}-\eta_{i} \cos \theta_{t}}{\eta_{t} \cos \theta_{i}+\eta_{i} \cos \theta_{t}}$


$$
E_{t}=t E_{i}
$$

$$
E_{r}=r E_{i}
$$

Fresnel Equations

## Today's Culture Moment

## Sir David Brewster

- Scottish scientist
- Studied at University of Edinburgh at age 12
- Independently discovered Fresnel Iens
- Editor of Edinburgh Encyclopedia and contributor to Encyclopedia Britannica ( $7^{\text {th }}$ and $8^{\text {th }}$ editions)
- Inventor of the Kal eidoscope
- Nominated (1849) to the National Institute of France.




## TM Case is the dual of TE



The TM solution can be recovered from the TE solution. So, consider only the TE solution in detail.

## TE \& TM Analysis - Solution

TE solution comes directly from the boundary condition analysis

$$
t=\frac{2 \eta_{t} \cos \theta_{i}}{\eta_{t} \cos \theta_{i}+\eta_{i} \cos \theta_{t}} \quad r=\frac{\eta_{t} \cos \theta_{i}-\eta_{i} \cos \theta_{t}}{\eta_{t} \cos \theta_{i}+\eta_{i} \cos \theta_{t}}
$$

TM solution comes from $\varepsilon \leftrightarrow \mu$

$$
r=\frac{\eta_{t}^{-1} \cos \theta_{i}-\eta_{i}^{-1} \cos \theta_{t}}{\eta_{t}^{-1} \cos \theta_{i}+\eta_{i}^{-1} \cos \theta_{t}} \quad t=\frac{2 \eta_{t}^{-1} \cos \theta_{i}}{\eta_{t}^{-1} \cos \theta_{i}+\eta_{i}^{-1} \cos \theta_{t}}
$$

Note that the TM solution provides the reflection and transmission coefficients for H , since TM is the dual of TE.

## Fresnel Equations - Summary

TE-polarization

$$
\begin{array}{rr}
r_{E}=\frac{E_{o}^{r}}{E_{o}^{i}}=\frac{N_{i}-N_{t}}{N_{i}+N_{t}} \\
N_{i}=\frac{1}{\eta_{1}} \cos \theta_{i} & t_{E}=\frac{E_{o}^{t}}{E_{o}^{i}}=\frac{2 N_{i}}{N_{i}+1} \\
N_{t}=\frac{1}{\eta_{2}} \cos \theta_{t}
\end{array}
$$

## TM Polarization

$$
r_{H}=\frac{H_{o}^{r}}{H_{o}^{i}}=\frac{M_{i}-M_{t}}{M_{i}+M_{t}}
$$

$$
M_{i}=\eta_{1} \cos \theta_{i}
$$

$$
t_{H}=\frac{H_{o}^{t}}{H_{o}^{i}}=\frac{2 M_{i}}{M_{i}+M_{t}}
$$

$$
M_{t}=\eta_{2} \cos \theta_{t}
$$

## Fresnel Equations - Summary

From Shen and Kong ... just another way of writing the same results

TE Polarization


## TM Polarization

$$
\begin{aligned}
& r_{T M}=\frac{E_{o}^{r}}{E_{o}^{i}}=\frac{\epsilon_{2} k_{i z}-\epsilon_{1} k_{t z}}{\epsilon_{2} k_{i z}+\epsilon_{1} k_{t z}} \\
& t_{T M}=\frac{E_{o}^{t}}{E_{o}^{i}}=\frac{2 \epsilon_{2} k_{i z}}{\epsilon_{2} k_{i z}+\epsilon_{1} k_{t z}}
\end{aligned}
$$

## Fresnel Equations

$\mathrm{n}_{1}=1.0 \quad \mathrm{n}_{2}=1.5$



## Fresnel Equations



## Reflection of Light

(Optics Viewpoint $\ldots \mu_{1}=\mu_{2}$ )


TE: $\quad r_{\perp}=\frac{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}+n_{2} \cos \theta_{t}}$
TM: $r_{\|}=\frac{n_{2} \cos \theta_{i}-n_{1} \cos \theta_{t}}{n_{2} \cos \theta_{i}+n_{1} \cos \theta_{t}}$


mage in the Public Domain
Sir David Brewster

## Brewster's Angle (Optics Viewpoint ... $\mu_{1}=\mu_{2}$ )



Light incident on the surface is absorbed, and then reradiated by oscillating electric dipoles (Lorentz oscillators) at the interface between the two media. The dipoles that produce the transmitted (refracted) light oscillate in the polarization direction of that light. These same oscillating dipoles also generate the reflected light. However, dipoles do not radiate any energy in the direction along which they oscillate. Consequently, if the direction of the refracted light is perpendicular to the direction in which the light is predicted to be specularly reflected, the dipoles will not create any TM-polarized reflected light.

## Energy Transport

TE


TM



Cross-sectional Areas

$$
\vec{S}=\vec{E} \times \vec{H}\left\{\begin{array}{l}
S_{i}=E_{o}^{i} H_{o}^{i} \cos \theta_{i} \\
S_{t}=E_{o}^{t} H_{o}^{t} \cos \theta_{t} \\
S_{r}=E_{o}^{r} H_{o}^{r} \cos \theta_{r}
\end{array}\right.
$$

## Transmitted Power Fraction:

$$
\begin{aligned}
& T_{s}=\frac{S_{t}}{S_{i}}=\frac{E_{o}^{t} H_{o}^{t} \cos \theta_{t}}{E_{o}^{i} H_{o}^{i} \cos \theta_{i}}=\frac{\left(E_{o}^{t}\right)^{2} \sqrt{\frac{\epsilon_{2}}{\mu_{2}}} \cos \theta_{t}}{\left(E_{o}^{i}\right)^{2} \sqrt{\frac{\epsilon_{1}}{\mu_{1}}} \cos \theta_{i}}=t_{E}^{2} \frac{N_{t}}{N_{i}} \\
&=\frac{\left(H_{o}^{t}\right)^{2} \sqrt{\frac{\mu_{2}}{\epsilon_{2}}} \cos \theta_{t}}{\left(H_{o}^{i}\right)^{2} \sqrt{\frac{\mu_{1}}{\epsilon_{1}}} \cos \theta_{i}}=t_{H}^{2} \frac{M_{t}}{M_{i}} \\
& \frac{\left(E_{o}^{t}\right)^{2}}{\left(E_{o}^{i}\right)^{2}} \equiv t_{E}^{2} \\
& \frac{\left(H_{o}^{t}\right)^{2}}{\left(H_{o}^{i}\right)^{2}} \equiv t_{H}^{2}
\end{aligned}
$$

## Reflected Power Fraction:

$$
\begin{gathered}
R_{s}=\frac{S_{r}}{S_{i}}=\frac{E_{o}^{r} H_{o}^{r} \cos \theta_{r}}{E_{o}^{i} H_{o}^{i} \cos \theta_{i}}=\frac{\left(E_{o}^{r}\right)^{2} \sqrt{\frac{\epsilon_{1}}{\mu_{1}}}}{\left(E_{o}^{i}\right)^{2} \sqrt{\frac{\epsilon_{1}}{\mu_{1}}}}=r_{E}^{2} \\
=\frac{\left(H_{o}^{r}\right)^{2} \sqrt{\frac{\mu_{1}}{\epsilon_{1}}}}{\left(H_{o}^{i}\right)^{2} \sqrt{\frac{\mu_{1}}{\epsilon_{1}}}}=r_{H}^{2} \\
\frac{\left(E_{o}^{r}\right)^{2}}{\left(E_{o}^{i}\right)^{2}} \equiv r_{E}^{2} \\
\frac{\left(H_{o}^{r}\right)^{2}}{\left(H_{o}^{i}\right)^{2}} \equiv r_{H}^{2} \quad \ldots \text { and from ENERGY CONSERVATION we know: } \\
T_{S}+R_{S}=1
\end{gathered}
$$

## Summary CASE I:

## E-field is polarized perpendicular to the plane of incidence

... then E-field is parallel (tangential) to the surface, and continuity of tangential fields requires that:

$$
1+r_{E}=t_{E}
$$

$$
\begin{gathered}
\square T_{S}+R_{S}=1 \\
\left(t_{E}\right)^{2} \frac{N_{t}}{N_{i}}+\left(r_{E}\right)^{2}=1 \\
\left(1+r_{E}\right)^{2} \frac{N_{t}}{N_{i}}+\left(r_{E}\right)^{2}=1
\end{gathered}
$$

$$
r_{E}=\frac{E_{o}^{r}}{E_{o}^{i}}=\frac{N_{i}-N_{t}}{N_{i}+N_{t}}
$$

$$
t_{E}=1+r_{E}=\frac{E_{o}^{t}}{E_{o}^{i}}=\frac{2 N_{i}}{N_{i}+N_{t}}
$$

## Summary CASE II:

## H -field is polarized perpendicular to the plane of incidence

... then H -field is parallel (tangential) to the surface, and continuity of tangential fields requires that:

$$
1+r_{H}=t_{H}
$$

$$
\square \quad T_{S}+R_{S}=1
$$

$$
\left(t_{H}\right)^{2} \frac{M_{t}}{M_{i}}+\left(r_{H}\right)^{2}=1
$$

$$
\left(1+r_{H}\right)^{2} \frac{M_{t}}{M_{i}}+\left(r_{H}\right)^{2}=1
$$

$$
r_{H}=\frac{H_{o}^{r}}{H_{o}^{i}}=\frac{M_{i}-M_{t}}{M_{i}+M_{t}}
$$

$$
t_{H}=1+r_{H}=\frac{H_{o}^{t}}{H_{o}^{i}}=\frac{2 M_{i}}{M_{i}+M_{t}}
$$

MIT OpenCourseWare
|http://ocw.mit.edu

### 6.007 Electromagnetic Energy: From Motors to Lasers

Spring 2011

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

