Fresnel Equations and Light Guiding

Reading - Shen and Kong-Ch. 4

Outline

- Review of Oblique Incidence
- Review of Snell's Law
- Fresnel Equations
- Evanescence and TIR
- Brewster' s Angle
- EM Power Flow

TRUE / FALSE

1. The Fresnel equations describe reflection and transmission coefficients as a function of intensity.
2. This is the power reflection and transmission plot for an
EM wave that is TE
(transverse electric) polarized:

3. The phase matching condition for refraction is a direct result of the boundary conditions.

Oblique Incidence at Dielectric Interface

Transverse Electric Field

Transverse
Magnetic Field

Partial TE Analysis

$$
\begin{aligned}
& \vec{E}_{i}=\hat{y} E_{o}^{i} e^{-j k_{i x} x-j k_{i z} z} \\
& \vec{E}_{r}=\hat{y} E_{o}^{r} e^{-j k_{r x} x+j k_{r z} z} \\
& \vec{E}_{t}=\hat{y} E_{o}^{t} e^{-j k_{t x} x-j k_{t z} z} \\
& \omega_{i}=\omega_{r}=\omega_{t}
\end{aligned}
$$

Tangential E must be continuous at the boundary $\underline{z=0}$ for all \times and for t.

$$
E_{o}^{i} e^{-j k_{i x} x}+E_{o}^{r} e^{-j k_{r x} x}=E_{o}^{t} e^{-j k_{t x} x}
$$

This is possible if and only if $k_{i x}=k_{r x}=k_{t x}$ and $\omega_{i}=\omega_{r}=\omega_{t}$.
The former condition is phase matching $\mathrm{k}_{\mathrm{ix}}=\mathrm{k}_{\mathrm{rx}}=\mathrm{k}_{\mathrm{tx}}$

Snell's Law

$$
k_{i x}=k_{r x}
$$

$n_{1} \sin \theta_{i}=n_{1} \sin \theta_{r}$

$$
\theta_{i}=\theta_{r}
$$

$$
k_{i x}=k_{t x}
$$

$$
n_{1} \sin \theta_{i}=n_{2} \sin \theta_{t}
$$

Snell' s Law

TE Analysis - Set Up

$$
k_{x}^{2}+k_{z}^{2}=k^{2}=\omega^{2} \mu \epsilon
$$

$$
\begin{aligned}
& \vec{E}_{i}=\hat{y} E_{o} e^{j\left(-k_{i x} x-k_{i z} z\right)} \\
& \vec{E}_{r}=\hat{y} r E_{o} e^{j\left(-k_{i x} x+k_{i z} z\right)} \\
& \vec{E}_{t}=\hat{y} t E_{o} e^{j\left(-k_{i x} x-k_{i z} z\right)} \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \mu \vec{H}}{\partial t} \\
&-j k \times \vec{E}=-j \omega \mu \vec{H} \quad \text { To get H, use } \\
& \vec{H}=\frac{1}{\omega \mu} k \times \vec{E} \quad \text { Faraday's Law } \\
& \vec{H}_{i}=\left(\hat{z} k_{i x}-\hat{x} k_{i z}\right) \frac{E_{o}}{\omega \mu_{1}} e^{j\left(-k_{i x} x-k_{i z} z\right)} \\
& \vec{H}_{r}=\left(\hat{z} k_{i x}+\hat{x} k_{i z}\right) \frac{r E_{o}}{\omega \mu_{1}} e^{j\left(-k_{i x} x+k_{i z} z\right)} \\
& \vec{H}_{t}=\left(\hat{z} k_{t x}+\hat{x} k_{t z}\right) \frac{t E_{o}}{\omega \mu_{2}} e^{j\left(-k_{t x} x-k_{t z} z\right)}
\end{aligned}
$$

TE \& TM Analysis - Solution

TE solution comes directly from the boundary condition analysis

$$
r=\frac{\eta_{t} \cos \theta_{i}-\eta_{i} \cos \theta_{t}}{\eta_{t} \cos \theta_{i}+\eta_{i} \cos \theta_{t}} \quad t=\frac{2 \eta_{t} \cos \theta_{i}}{\eta_{t} \cos \theta_{i}+\eta_{i} \cos \theta_{t}}
$$

TM solution comes from $\varepsilon \leftrightarrow \mu$

$$
r=\frac{\eta_{t}^{-1} \cos \theta_{i}-\eta_{i}^{-1} \cos \theta_{t}}{\eta_{t}^{-1} \cos \theta_{i}+\eta_{i}^{-1} \cos \theta_{t}} \quad t=\frac{2 \eta_{t}^{-1} \cos \theta_{i}}{\eta_{t}^{-1} \cos \theta_{i}+\eta_{i}^{-1} \cos \theta_{t}}
$$

Note that the TM solution provides the reflection and transmission coefficients for H , since TM is the dual of TE.

Fresnel Equations - Summary

From Shen and Kong ...j ust another way of writing the same results

TE Polarization

$$
\begin{gathered}
r_{\mathrm{TE}}=\frac{E_{o}^{r}}{E_{o}^{i}}=\frac{\mu_{2} k_{i z}-\mu_{1} k_{t z}}{\mu_{2} k_{i z}+\mu_{1} k_{t z}} \\
t_{\mathrm{TE}}=\frac{E_{o}^{t}}{E_{o}^{i}}=\frac{2 \mu_{2} k_{i z}}{\mu_{2} k_{i z}+\mu_{1} k_{t z}}
\end{gathered}
$$

TM Polarization

$$
\begin{aligned}
& r_{\mathrm{TM}}=\frac{E_{o}^{r}}{E_{o}^{i}}=\frac{\epsilon_{2} k_{i z}-\epsilon_{1} k_{t z}}{\epsilon_{2} k_{i z}+\epsilon_{1} k_{t z}} \\
& t_{\mathrm{TM}}=\frac{E_{o}^{t}}{E_{o}^{i}}=\frac{2 \epsilon_{2} k_{i z}}{\epsilon_{2} k_{i z}+\epsilon_{1} k_{t z}}
\end{aligned}
$$

Reflection of Light
 (Optics Viewpoint ... $\mu_{1}=\mu_{2}$)

Sir David Brewster (1781-1868) was a Scottish scientist, inventor and writer. Rediscovered and popularized kaleidoscope in 1815.

Brewster's Angle

Reflected ray (TE polarised) $\theta_{\mathrm{B}}+\theta_{\mathrm{t}}=90^{\circ}$

$$
\begin{aligned}
n_{1} \sin \left(\theta_{B}\right) & =n_{2} \sin \left(90-\theta_{B}\right) \quad \begin{array}{c}
\text { Refracted ray } \\
\text { (slightly polarised) }
\end{array} \\
& =n_{2} \cos \left(\theta_{B}\right)
\end{aligned}
$$

$\theta_{B}=\arctan \left(\frac{n_{2}}{n_{1}}\right)$

$$
@ \theta_{i}=\theta_{B}
$$

$$
\mathrm{TE}: r_{\perp}=\frac{n_{1} \cos \theta_{B}-n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{B}+n_{2} \cos \theta_{t}} \neq 0
$$

$$
\text { TM: } r_{\|}=\frac{n_{2} \cos \theta_{B}-n_{1} \cos \theta_{t}}{n_{2} \cos \theta_{B}+n_{1} \cos \theta_{t}}=0
$$

Total Internal Reflection

Beyond the critical angle, refraction no longer occurs

- thereafter, you get total internal reflection

$$
n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1} \rightarrow \theta_{\text {crit }}=\sin ^{-1}\left(n_{1} / n_{2}\right)
$$

- for glass ($\mathrm{n}_{2}=1.5$), the critical internal angle is 42°
- for water, it' s 49°
- a ray within the higher index medium cannot escape at shallower angles (look at sky from underwater..)

Snell's Law Diagram

Tangential field is continuous ... $k_{i x}=k_{i t}$

Refraction

Total Internal Reflection

Total Internal Reflection \& Evanscence

Snell's Law dictates $n_{1} \sin \left(\theta_{\mathrm{i}}\right)=\mathrm{n}_{2} \sin \left(\theta_{\mathrm{t}}\right)$, or equivalently, $\mathrm{k}_{\mathrm{ix}}=\mathrm{k}_{\mathrm{tx}}$. For $\mathrm{n}_{1}>\mathrm{n}_{2}, \theta_{\mathrm{t}}=90^{\circ}$ at $\theta_{i}=\sin ^{-1}\left(n_{2} / n_{1}\right) \equiv \theta_{C}$. What happens for $\theta_{i}>\theta_{C}$?

$k_{\mathrm{tz}}^{2}=\mathrm{k}_{\mathrm{t}}^{2}-\mathrm{k}_{\mathrm{tx}}^{2}<0 \rightarrow \mathrm{k}_{\mathrm{tz}}= \pm \mathrm{j} a_{\mathrm{tz}}$, with a_{tz} real.
The refracted, or transmitted, wave takes the complex exponential form
$\exp \left(-j k_{t x} x-a_{t z} z\right)$.
This is a non-uniform plane wave that travels in the x direction and decays in the z direction. It carries no time average power into Medium 2.
This phenomenon is referred to as total internal reflection. This is the similar to reflection of radio waves by the ionosphere.

Total Internal Reflection in Suburbia

Moreover, this wheel analogy is mathematically equival ent to the refraction phenomenon. One can recover Snell's law from

$$
\text { it: } \mathrm{n}_{1} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2}
$$

The upper wheel hits the sidewalk and starts to go faster, which turns the axle until the upper wheel re-enters the grass and wheel pair goes straight again.

Frustrated Total Internal Reflection In Suburbia

An evanescent field can propagate once the field is again in a high-index material.

Applications of Evanescent Waves

Image in the Public Domain

The camera observes TIR from a fingerprint valley and blurred TIR from a fingerprint ridge.

Single Mode Fibre Structure

The optic fiber used in undersea cables is chosen for its exceptional clarity, permitting runs of more than 100 kilometers between repeaters to minimize the number of amplifiers and the distortion they cause.

Typically 69 mm in diameter and weigh around 10 kg per meter

Submarine communication cables crossing the Scottish shore

Image by Jmb at http://en.wikipedia.org/ wiki/File:Submarine_Telephone_Cables_ PICT8182_1.JPG on Wikipedia.

Optical Waveguides Examples

Image by Apreche
http:// www.flickr.com/ photos/ apreche/ 69061912/ on flickr

Image by Rberteig http:// www.flickr.com/ photos/ rberteig/ 89584968/ on flickr

LCD screen lit by two backlights coupled into a flat waveguide

Image by Mike Licht http:// www. flickr.com/ photos/ notionscapital/ 2424165659/ on flickr

Optical fiber

Today's Culture Moment

Global Fiber Optic Network

Image by MIT OpenCourseWare

Image by Paul Keleher http:/ / commons.wiki media.org/ wiki/ File:Trench USA-fiber.jpg on Wikimedia Commons.

Today's Culture Moment

Laying Transcontinental Cables

Image in the Public Domain

© Kyle Hounsell. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
http:// ocw. mit. edu/ fairuse

Three Ways to Make a Mirror

Transporting Light

We can transport light along the z-direction by bouncing it between two mirrors

...where

$$
k_{y}=n k_{o} \sin \theta \quad k_{z}=n k_{o} \cos \theta
$$

Transverse Electric (TE) Modes

$$
E_{x}(y, z)=\left(A_{1} e^{+j k_{y} y}+A_{2} e^{-j k_{y} y}\right) e^{-j \beta z}
$$

$$
=a_{m} u_{m}(y) e^{-j \beta_{m} z}
$$

STANDING WAVE IN y-DIRECTION

Perfect Conductor Waveguide

$u_{m}(y)= \begin{cases}\sqrt{2 / d} \cos k_{y} y & \text { if } m=\text { odd } \\ \sqrt{2 / d} \sin k_{y} y & \text { if } m=\text { even }\end{cases}$

Transporting Light

$$
k_{z, m}=n k_{o} \cos \theta_{m} \stackrel{\square}{\square} k_{z, m}^{2}=k^{2}-m^{2} \frac{\pi^{2}}{d^{2}}
$$

Transporting Light

The solutions can be plotted along a circle of radius $k=n k_{0} .$.

$$
\begin{aligned}
& k_{y m}=n k_{o} \sin \theta_{m}=m \frac{\pi}{d} \\
& k_{z, m}=n k_{o} \cos \theta_{m}
\end{aligned}
$$

Waveguide Mode Propagation Velocity

Velocity along the direction of the guide...

$$
v_{m}=\frac{c}{n} \cos \theta_{m}
$$

...steeper angles take longer to travel through the guide

Lowest Frequency Guided Mode

Cut-off Frequency

Solutions for a Dielectric Slab Waveguide

What does it mean to be a mode of a waveguide?

Slab Dielectric Waveguidec

Comparison of Mirror Guide and Dielectric Waveguide

Metal Waveguide

Dielectric Waveguide

Key Takeaways

Evanescent field
$\exp \left(-j k_{t x} x-a_{t z} z\right)$
Waveguide Modes

$$
u_{m}(y)= \begin{cases}\sqrt{2 / d} \cos \left(\frac{m \pi y}{d}\right) & \text { if } m=\text { odd } \\ \sqrt{2 / d} \sin \left(\frac{m \pi y}{d}\right) & \text { if } m=\text { even }\end{cases}
$$

MIT OpenCourseWare
|http://ocw.mit.edu

6.007 Electromagnetic Energy: From Motors to Lasers

Spring 2011

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

